已知一个长度为 n
的数组,预先按照升序排列,经由 1
到 n
次 旋转 后,得到输入数组。例如,原数组 nums = [0,1,2,4,5,6,7]
在变化后可能得到:
- 若旋转
4
次,则可以得到[4,5,6,7,0,1,2]
- 若旋转
7
次,则可以得到[0,1,2,4,5,6,7]
注意,数组 [a[0], a[1], a[2], ..., a[n-1]]
旋转一次 的结果为数组 [a[n-1], a[0], a[1], a[2], ..., a[n-2]]
。
给你一个元素值 互不相同 的数组 nums
,它原来是一个升序排列的数组,并按上述情形进行了多次旋转。请你找出并返回数组中的 最小元素 。
你必须设计一个时间复杂度为 O(log n)
的算法解决此问题。
示例 1:
输入:nums = [3,4,5,1,2] 输出:1 解释:原数组为 [1,2,3,4,5] ,旋转 3 次得到输入数组。
示例 2:
输入:nums = [4,5,6,7,0,1,2] 输出:0 解释:原数组为 [0,1,2,4,5,6,7] ,旋转 3 次得到输入数组。
示例 3:
输入:nums = [11,13,15,17] 输出:11 解释:原数组为 [11,13,15,17] ,旋转 4 次得到输入数组。
提示:
n == nums.length
1 <= n <= 5000
-5000 <= nums[i] <= 5000
nums
中的所有整数 互不相同nums
原来是一个升序排序的数组,并进行了1
至n
次旋转
代码实现:
class Solution {
public int findMin(int[] nums) {
// 初始化low和high指针,分别指向数组的第一个和最后一个元素
int low = 0;
int high = nums.length - 1;
// 当low指针小于high指针时,进行循环
while (low < high) {
// 找到中间元素的索引
int pivot = low + (high - low) / 2;
// 如果中间元素小于high指向的元素,说明最小元素在左半部分或者就是中间元素
if(nums[pivot] < nums[high]) {
// 更新high指针到中间元素的位置
high = pivot;
} else {
// 如果中间元素不小于high指向的元素,说明最小元素在右半部分
// 更新low指针到中间元素的下一个位置
low = pivot + 1;
}
}
// 循环结束时,low和high指针会指向同一个位置,这个位置就是最小元素的位置
// 返回这个位置上的元素值
return nums[low];
}
}