给你数字 k ,请你返回和为 k 的斐波那契数字的最少数目,其中,每个斐波那契数字都可以被使用多次。
斐波那契数字定义为:
F1 = 1
F2 = 1
Fn = Fn-1 + Fn-2 , 其中 n > 2 。
数据保证对于给定的 k ,一定能找到可行解。示例 1:
输入:k = 7
输出:2
解释:斐波那契数字为:1,1,2,3,5,8,13,……
对于 k = 7 ,我们可以得到 2 + 5 = 7 。
示例 2:输入:k = 10
输出:2
解释:对于 k = 10 ,我们可以得到 2 + 8 = 10 。
示例 3:输入:k = 19
输出:3
解释:对于 k = 19 ,我们可以得到 1 + 5 + 13 = 19 。
提示:
1 <= k <= 10^9
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/find-the-minimum-number-of-fibonacci-numbers-whose-sum-is-k
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
class Solution {
public int findMinFibonacciNumbers(int k) {
int count = 0;
while(k != 0){
int num = helper(k);
k = k - num;
count++;
}
return count;
}
/**
斐波那契数列中小于等于k中的最大的数
*/
public int helper(int k){
int a = 1;
int b = 1;
while(b < k){
int c = a + b;
a = b;
b = c;
}
return b <= k ? b:a;
}
}