题目
可以用字符串表示一个学生的出勤记录,其中的每个字符用来标记当天的出勤情况(缺勤、迟到、到场)。记录中只含下面三种字符:
‘A’:Absent,缺勤
‘L’:Late,迟到
‘P’:Present,到场
如果学生能够 同时 满足下面两个条件,则可以获得出勤奖励:
按 总出勤 计,学生缺勤(‘A’)严格 少于两天。
学生 不会 存在 连续 3 天或 连续 3 天以上的迟到(‘L’)记录。
给你一个整数 n ,表示出勤记录的长度(次数)。请你返回记录长度为 n 时,可能获得出勤奖励的记录情况 数量 。答案可能很大,所以返回对 109 + 7 取余 的结果。
示例 1:
输入:n = 2
输出:8
解释:
有 8 种长度为 2 的记录将被视为可奖励:
“PP” , “AP”, “PA”, “LP”, “PL”, “AL”, “LA”, “LL”
只有"AA"不会被视为可奖励,因为缺勤次数为 2 次(需要少于 2 次)。
示例 2:
输入:n = 1
输出:3
示例 3:
输入:n = 10101
输出:183236316
提示:
1 <= n <= 105
解题思路
//3种排列组合为
1 2 3 … n
3 9 27 … 3^n
//符合条件的 == 总数(3^n) - 不符合条件的
3^n 的数据明显不成立,因此要逐天考虑
//不符合条件的情况:
至少含有2个 A,及只需要考虑2个 A 存在的情况,其余的空格排列组合即可
三个连续的 L ,将 LLL 看作一个整体,进行排列组合
(其中有可能存在重合的部分,比如:AALLL,采用dp 从右向左进行【只需要考虑结尾是什么】,则需要考虑 有A 和 无A 的情况,防止重复)
//分类讨论:
【假设有 i 天,假设第 i 天符合条件数 为 dp[i] 】
(1)
无A:
1. 第 i 天的记录为 P
…P 以 p 为结尾,以 p 为结尾不会带来任何变化,只需要考虑前 i 天有几个符合要求的
dp[i]=dp[i-1]
2.第 i 天的记录为 L
…L 存在特殊情况:以 LLL 为结尾(…LLL),说明不符合,因此 要利用 i-1 天记录为 L 的减去 i-4 天的
dp[i] =dp[i-1]-dp[i-4]
(2)
有A: 第 i 个为 A
[0… i-1] A [i+1 … n]
dp[i-1]*dp[n-i]
代码
class Solution {
public:
int checkRecord(int n) {
const long long int MOD=1000000007;
vector<long long int> dp(n+4);//由于LLL的存在,至少要4个
//cout<<dp.size();
//dp 初始化,考虑无A的情况
dp[0]=1; //1种 (2^0-0==1)
dp[1]=2; //2种 P L (2^1-0==2)
dp[2]=4; //4种 PP LP LL PL (2^2-0 ==4)
dp[3]=7; //7种 PPP LPP PLP LLP LLL(X) PLL LPL PPL (2^3-1==7)
//利用 dp 公式进行
for(int i=4;i<=n;i++){
dp[i]=(2*dp[i-1])%MOD+(MOD-dp[i-4])%MOD;
dp[i]=dp[i]%MOD;//对自身取模,防止越界
//dp[i]=(dp[i-1]) + (dp[i-1]-dp[i-4])
// 以P为结尾 以L为结尾
}
//加入 A 的情况
long long int ans=dp[n]%MOD;//首先,记录无 A 的情况
for(int i=1;i<=n;i++)
{
ans=(ans%MOD+(dp[i-1]*dp[n-i])%MOD)%MOD;
}
return ans%MOD;
}
};