【2022牛客暑期多校训练营2】E. Falfa with Substring(容斥+NTT)

【2022牛客暑期多校训练营2】E. Falfa with Substring

题目链接

https://ac.nowcoder.com/acm/contest/33187/E

题意

对于所有的 0 ≤ k ≤ n 0≤k≤n 0kn,求长度为 n n n 且恰好出现 k k k 个 “bit” 子串的字符串数量,答案对 998244353 998244353 998244353 取模。

算法

容斥+NTT优化

思路

G k G_k Gk 表示至少出现 k k k 个 “bit” 子串的字符串数量, F k F_k Fk 表示恰好出现 k k k 个 “bit” 子串的字符串数量。那么可以推出:
F k = ∑ i = k n   ( − 1 ) i − k ( i k ) G i k ! F k = ∑ i = k n   i ! G i   ( − 1 ) i − k ( i − k ) ! \begin{aligned} F_k&=\sum_{i=k}^n\ (-1)^{i-k}\binom{i}{k}G_i\\ k!F_k&=\sum_{i=k}^n\ i!G_i\ \frac{(-1)^{i-k}}{(i-k)!} \end{aligned} Fkk!Fk=i=kn (1)ik(ki)Gi=i=kn i!Gi (ik)!(1)ik
(因为本蒟蒻没有系统性学习过卷积一类知识,只能从其性质来推T-T)
可以发现这是一个差卷积的形式(很显然作者刚知道差卷积这玩意)。
卷积,就是对于多项式 h = f ∗ g h=f*g h=fg 来说, h k = ∑ i = 0 k f i ∗ g k − i h_k=\sum_{i=0}^k f_i*g_{k-i} hk=i=0kfigki,基于此定义,我们试图找出式子与其的共同点。
卷积形象化
然而,我们令 f i = i ! G i f_i=i!G_i fi=i!Gi g i = ( − 1 ) i i ! g_i=\frac{(-1)^{i}}{i!} gi=i!(1)i h i = i ! F i h_i=i!F_i hi=i!Fi,我们要的卷积形式如下图,难以用多项式算法直接求解。
h
于是,我们试图将式 g g g 进行翻转,使 g i = ( − 1 ) n − i ( n − i ) ! g_i=\frac{(-1)^{n-i}}{(n-i)!} gi=(ni)!(1)ni
g
由此,可以得到新的卷积式。
在这里插入图片描述
至此,一个很明显的多项式乘法即可求解:
h = f ∗ g k ! F k = [ x n + k ] h F k = [ x n + k ] h k ! \begin{aligned} h&=f*g\\ k!F_k&=[x^{n+k}]h\\ F_k&=\frac{[x^{n+k}]h}{k!} \end{aligned} hk!FkFk=fg=[xn+k]h=k![xn+k]h

/*
Karashi写的辣眼睛代码,别看了别看了,码风过于旧世代。
怎么还有人连for都要偷懒啊,别问为什么这么多define了,问就是懒
若遇"#define ll int"的操作,球球别骂了别骂了,作者傻瓜喜欢无脑开ll
*/
#include<bits/stdc++.h>
#define ll long long
#define L(i,j,k) for(ll i=(j);i<=(k);++i)
#define R(i,j,k) for(ll i=(j);i>=(k);--i)
#define inf 9e18
#define vec vector
#define pll pair<ll,ll>
#define fi first
#define se second
#define pb push_back
#define mkp make_pair
#define MS(i,j) memset(i,j,sizeof (i))
const ll N=3e6+10,M=10;
const ll mod=998244353,mmod=mod-1;
const double pi=acos(-1),eps=1e-8;
using namespace std;
ll fmul(ll a,ll b){a%=mod;b%=mod;ll res=0;while(b){if(b&1){res+=a;res%=mod;}a<<=1;if(a>=mod)a%=mod;b>>=1;}return res;}
ll gcd(ll x,ll y){if(y==0) return x;return gcd(y,x%y);}
ll fksm(ll a,ll b){ll r=1;for(a%=mod;b;b>>=1){if(b&1)r=1ll*r*a%mod;a=1ll*a*a%mod;}return r;}
ll lowbit(ll x){return x&(-x);}
ll dx[5]={0,1,0,-1},dy[5]={1,0,-1,0};

ll m,n,t,x,y,z,l,r,u,v,k,p,pp,nx,ny,nz,ansx,ansy,mn,mx;
ll rt,op,lim,pos,key,block;
ll cnt,tot,num,sum,ans;
double dans;
bool vis[N],flag;
char s[N],mapp,zz[5];
struct qq{ll x,y,z;}q;

ll fac[N],fra[N],two=fksm(2,mod-2);
void init_fac(ll n){//n阶阶乘初始化 
    fac[0]=1;
    L(i,1,n)fac[i]=fac[i-1]*i%mod;
    fra[n]=fksm(fac[n],mod-2);
    R(i,n-1,0)fra[i]=fra[i+1]*(i+1)%mod;
}
ll C(ll n,ll k){if(!n&&!k)return 1;if(n<k||k<0)return 0;return fac[n]*fra[k]%mod*fra[n-k]%mod;}//组合数

namespace Poly{
    #define plus(x,y) (x+y>=mod?x+y-mod:x+y)
    typedef vector<int> poly;
    const int G=3,Gi=fksm(G,mod-2);//mod=998244353,G=3;mod=1e9+7,G=5;

    int R[N],inv[N],der[2][22][N];
    void init_poly(int n){
        int m=1,t=0;
        while(m<n)m<<=1,++t;m<<=1,++t;
        L(p,1,t){
            int buf1=fksm(G,(mod-1)/(1<<p));
            int buf0=fksm(Gi,(mod-1)/(1<<p));
            der[0][p][0]=der[1][p][0]=1;
            for(int i=1;i<(1<<p);++i){
                der[0][p][i]=1ll*der[0][p][i-1]*buf0%mod;//逆
                der[1][p][i]=1ll*der[1][p][i-1]*buf1%mod;
            }
        }
        inv[1]=1;
        L(i,2,m)inv[i]=1ll*inv[mod%i]*(mod-mod/i)%mod;
    }
    int init_ntt(int siz){
        int lim=1,k=0;
        while(lim<siz)lim<<=1,k++;
        L(i,0,lim-1)R[i]=(R[i>>1]>>1)|((i&1)<<(k-1));
        return lim;
    }
    void ntt(poly &f,int type,int lim){
        f.resize(lim);
        L(i,0,lim-1)
            if(i<R[i])swap(f[i],f[R[i]]);
        for(int mid=2,j=1;mid<=lim;mid<<=1,++j){
            int len=mid>>1;
            for(int pos=0;pos<lim;pos+=mid){
                int *wn=der[type][j];
                for(int i=pos;i<pos+len;++i,++wn){
                    int tmp=1ll*(*wn)*f[i+len]%mod;
                    f[i+len]=plus(f[i],mod-tmp);
                    f[i]=plus(f[i],tmp);
                }
            }
        }
        if(type==0){
            L(i,0,lim-1)f[i]=1ll*f[i]*inv[lim]%mod;
        }
    }

    poly operator * (poly f,poly g){
        int siz=f.size()+g.size()-1;
        int lim=init_ntt(siz);
        ntt(f,1,lim);ntt(g,1,lim);
        L(i,0,lim-1)f[i]=1ll*f[i]*g[i]%mod;
        ntt(f,0,lim);f.resize(siz);
        return f;
    }

    poly poly_inv(poly &f,int siz){//逆元
        if(siz==1)return poly(1,fksm(f[0],mod-2));
        poly f0(f.begin(),f.begin()+siz);
        poly f1=poly_inv(f,(siz+1)>>1);
        int lim=init_ntt(siz<<1);
        ntt(f0,1,lim);ntt(f1,1,lim);
        L(i,0,lim-1)f0[i]=f1[i]*(2-1ll*f0[i]*f1[i]%mod+mod)%mod;
        ntt(f0,0,lim);f0.resize(siz);
        return f0;
    }

    poly poly_dev(poly f){//求导
        int siz=f.size();
        L(i,1,siz-1)f[i-1]=1ll*f[i]*i%mod;
        return f.resize(siz-1),f;
    }
    poly poly_idev(poly f){//求积
        int siz=f.size();
        R(i,siz-1,1)f[i]=1ll*f[i-1]*inv[i]%mod;
        return f[0]=0,f;
    }

    poly poly_ln(poly f,int siz){//求指数
        poly g=poly_dev(f)*poly_inv(f,siz);g.resize(siz);
        return poly_idev(g);
    }
    poly poly_exp(poly &f,int siz){//求对数
        if(siz==1)return poly(1,1);
        poly g=poly_exp(f,(siz+1)>>1);
        g.resize(siz);
        poly lng=poly_ln(g,siz);
        L(i,0,siz-1)lng[i]=plus(f[i],mod-lng[i]);
        int lim=init_ntt(siz<<1);
        ntt(g,1,lim);ntt(lng,1,lim);
        L(i,0,lim-1)g[i]=1ll*g[i]*(lng[i]+1)%mod;
        ntt(g,0,lim);g.resize(siz);
        return g;
    }

    poly poly_sqrt(poly &f,int siz){//开方
        if(siz==1)return poly(1,1);
        poly f0(f.begin(),f.begin()+siz);
        poly f1=poly_sqrt(f,(siz+1)>>1);
        f0=f0*poly_inv(f1,siz);
        L(i,0,siz-1)f0[i]=1ll*plus(f0[i],f1[i])*inv[2]%mod;
        f0.resize(siz);
        return f0;
    }

    poly poly_pow(poly f,int k){//快速幂(f[0]==1)
        int siz=f.size();
        f=poly_ln(f,siz);
        L(i,0,siz-1)f[i]=1ll*f[i]*k%mod;
        return poly_exp(f,siz);
    }
}using namespace Poly;

void solve(){
    scanf("%lld",&n);
    poly f,g;
    L(i,0,n){
        if(n>=3*i)f.pb(fac[i]*C(n-2*i,i)%mod*fksm(26,n-3*i)%mod);
        else f.pb(0);
    }
    L(i,0,n){
        g.pb((mod+fksm(fac[n-i],mod-2)*((n-i)%2==1?-1:1))%mod);
    }
    poly h=f*g;
    L(i,0,n){
        printf("%d ",1ll*h[i+n]*fksm(fac[i],mod-2)%mod);
    }
}

int main(){
    // ios::sync_with_stdio(false);cin.tie(0);cout.tie(0);
    // cout<<fixed<<setprecision(12);//精度
    init_poly(1e6);
    init_fac(1e6);
    ll Case=1;
    //scanf("%lld",&Case);
    while(Case--)solve();
}
  • 2
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值