计算机当中的求余运算

1、概念        

      求余运算,也称为取模运算,是数学和编程中的一种基本运算。它用于计算两个数相除后的余数。求余运算通常用符号表示。

        例如,如果我们有 10 % 3,这表示我们想要找出 10 被 3 除后的余数。在这种情况下,结果是 1,因为 3 可以被整除进 10 三次(即 9),剩下 1 作为余数。

求余运算的一些特性:

  1. 当被除数小于除数时,结果就是被除数本身。例如,2 % 5 的结果是 2
  2. 如果被除数正好可以被除数整除,那么余数为 0。例如,10 % 5 的结果是 0
  3. 求余运算的结果的符号与被除数的符号相同。例如,-7 % 3 的结果是 -1,而 7 % -3 的结果是 1。

2、不同编程语言结果不同

1、C风格的取模运算

        在这种情况下,取模运算的结果符号与被除数(即做取模运算的那个数)相同。例如,在C、C++中,表达式 -5 % 3 的结果是 -2,因为 -5 = (-2) * 3 + (-2)

2、数学上的取模运算

        在数学上,取模运算通常定义为得到一个非负的结果,这个结果是在模意义下的最小非负剩余。例如,-5mod3的结果是 1,因为 -5 = (-2) * 3 + 1。这种定义保证了结果总是在 [0, modulus) 这个范围内,其中 modulus 是除数。

在Python中,取模运算遵循的是第二种定义,即数学上的取模运算。这意味着当你在Python中执行 -5 % 3 时,你会得到 1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值