P5596 一道解方程的数学题

博客探讨了一道数学方程的求解过程,特别关注无限解的情况。通过移项、因式分解和换元法求得解,并利用单调性找到特定解。调试过程中遇到问题,但未展示代码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

P5596 【XR-4】题

题目中给了一个方程:y^{2}-x^{2}=ax+b

那大致就是要从这个方程入手了

首先我们处理无限解的情况

-x^{2}移项到右边 这样一来 如果x^{2}+ax+b是个完全平方数 即a^{2}=4b时 方程有无穷多解

然后正经的解一下方程

因式分解一下

\left ( y-x \right )\left ( y+x \right )=ax+b

这里使用换元法 令t= y-x

t\left ( t+2x \right )=ax+b

t^{2}+2tx=ax+b

解得 x=\frac{b-t^{2}}{2t-a}

直接把t枚举一下,在这个过程中我们可以很明显的看出b-t^{2}单调递减,而2t-a单调递增,于是必有一个t值可以使得b-t^{2}< 02t-1> 0

这时退出循环即可得到答案

由于这个题wa了几个点,在调试过程也不理想,所以就不贴代码了

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值