牛牛的朋友(贪心问题)

该问题描述了一群位于坐标轴上的牛在按照指定距离移动后,如何计算最左边和最右边的牛之间的最小距离。这是一个贪心算法问题,通过枚举分割线,不断更新最小边界来找到答案。程序通过排序牛的位置,然后遍历并计算不同分割线情况下的左右边界,从而得出最小距离。
摘要由CSDN通过智能技术生成

链接:https://ac.nowcoder.com/acm/problem/21545

来源:牛客网

题目描述

牛牛有一群牛友,每只小牛都站在坐标轴上的某个位置,这群牛友很听牛牛的话,每当牛牛做个手势,每只小牛都会移动恰好X个单位的距离,要么向左,要么向右

现在告诉你每只小牛在移动前的位置,求移动之后最左边的牛与最右边的牛的最小距离

输入描述:

第一行输入一个整数n (1 ≤ n ≤ 50),表示牛的数量

第二行输入n个数pi (-1e8 ≤ pi ≤ 1e8),表示每只牛的位置

第三行输入一个整数X (0 ≤ X ≤ 1e8)

输出描述:

输出一个整数

输入

3

-3 0 1

3

输出

3

思考

我们要得到最右边减去最左边的最小值,这是一道贪心问题。

每头牛可以往左边移动也可以往右边移动,需要求得值是右边界减去左边界的最小值

但要明确最左边的牛一定往右边移动才不会扩大左边界,最右边的牛一定往左边移动才不会扩大有边界

所以每次我们都可以选取一个最优的方案

通过枚举分割线,移动每次选取最小的的“左边界”,选取最大的“右边界”

#include<iostream>
#include<algorithm>
using namespace std;

const int N  = 55;
int n, x;
int a[N];

int main(){
    scanf("%d", &n);
    
    for(int i = 1; i <= n; i++) scanf("%d", &a[i]);
    scanf("%d", &x);
    sort(a + 1, a + 1 + n);
    
    int ans = a[n] - a[1];
    for(int i = 1; i <= n; i++){
        int left = min(a[1] + x, a[i+1] - x);
        int right = max(a[n] - x, a[i] + x);
        ans = min(ans, right - left);
    }
    
    printf("%d\n", ans);
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Libert_AC

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值