牛顿迭代法介绍
牛顿迭代法主要用于求解对于不便于计算的非线性方程实根的问题,利用牛顿迭代法求出近似解。
原理介绍
对于非线性方程在
附近进行Tayor展开:
取其线性部分作为非线性方程 = 0的近似方程
设,则解为:
再把在
附近展开Tayor级数,取其线性部分作为
= 0的近似方程,若
,则有:
如此可以推导出Newton法:
实际应用举例
为了更好理解牛顿迭代法,利用求解方程根进行举例
求导方程为:
C++代码实现
#include<iostream>
#include<cmath>
using namespace std;
//实例:y=x^3+e^x
double x; //定义变量x
double X; //临时变量,记录第k次的x值,用于判断精度,第k次与第k+1次做差比较精度
double y(double x) //定义关于x的表达式
{
return -x*x*x + exp(x);
}
double dy(double x) //定义导数公式
{
return -3 * x*x + exp(x);
}
bool accuracy(double x0)
{
if (fabs(X - x0) > 1e-5) //定义精度10的负5次方
{
return 1;
}
else
return 0;
}
void ND(double x0) //牛顿迭代法
{
int n = 0; //记录迭代次数
do{
double _y = y(x0);
double _dy = dy(x0);
X = x0;
x0 = x0 - _y / _dy;
n++;
cout << "第" << n << "次迭代结果为:" ;
printf("%.5f\n", x0);
} while (accuracy(x0));
cout << "共迭代" << n << "次,最终近似解为:" ;
printf("%.5f\n", x0);
}
void main()
{
x = 4.5; //定义x0初始值
ND(x);
}
故由此可知,函数 函数近似解为4.53640
补充优化
在实际求解非线性放出实根时,部分方程可能会出现求导困难的情况,故可以利用差商代替求导,则公式为:
C++代码为:
#include<iostream>
#include<cmath>
using namespace std;
//实例:y=x^3+e^x
double x; //定义变量x
double X; //临时变量,记录第k次的x值,用于判断精度,第k次与第k+1次做差比较精度
double y(double x) //定义关于x的表达式
{
return -x*x*x + exp(x);
}
bool accuracy(double x0)
{
if (fabs(X - x0) > 1e-5) //定义精度10的负5次方
{
return 1;
}
else
return 0;
}
void ND_optimize(double x1,double x0) //牛顿迭代法差商改进
{
double _y1 = y(x0);
double _y2 = y(x1);
int n = 0; //记录迭代次数
do{
double _y1 = y(x0);
double _y2 = y(x1);
X = x0;
x0 = x0 - (_y1 / (_y1-_y2)) * (x0-x1);
n++;
cout << "第" << n << "次迭代结果为:";
printf("%.5f\n", x0);
} while (accuracy(x0));
cout << "共迭代" << n << "次,最终近似解为:";
printf("%.5f\n", x0);
}
void main()
{
double x1 = 4.5; //定义x1初始值
double x2 = 4; //定义x2初始值
ND_optimize(x1,x2);
}