数论
各种数论的题
OI之神
这个作者很懒,什么都没留下…
展开
-
乘法逆元(线性)
题目背景这是一道模板题题目描述给定 n,pn,p 求 1\sim n1∼n 中所有整数在模 pp 意义下的乘法逆元。输入格式一行两个正整数 n,pn,p。输出格式输出 nn 行,第 ii 行表示 ii 在模 pp 下的乘法逆元。这是一道坑题,直接做qsm全是TLE。推线性方程。推导:前提:inv[1]=1;求:i * x = 1 (mod p)不妨令p=ax+b;ax+b=0(mod p)同乘a,b逆元a inv[b]+inv[x]=0 (mod p)inv[x]=-a i原创 2021-08-15 12:30:43 · 332 阅读 · 0 评论 -
质数(数论)
质数 (prime.pas/c/cpp)【问题描述】 小 X 是一位热爱数学的男孩子,在茫茫的数字中,他对质数更有一种独特 的情感。小 X 认为,质数是一切自然数起源的地方。 在小 X 的认知里,质数是除了本身和 1 以外,没有其他因数的数字。 但由于小 X 对质数的热爱超乎寻常,所以小 X 同样喜欢那些虽然不是质数,但 却是由两个质数相乘得来的数。 于是,我们定义,一个数是小 X 喜欢的数,当且仅当其是一个质数,或是两个 质数的乘积。 而现在,小 X 想要知道,在 L 到 R 之间,有多少数是他喜欢的数原创 2021-08-11 23:50:43 · 305 阅读 · 0 评论 -
序列问题(数论)
序列问题【问题描述】Brunhilda 十分喜欢序列, 她喜欢观察序列的性质。现在 Brunhilda 手上有 n 个不同的数, 于是她尝试将这 n 个数字填到长为 n 的序列 A 中。在她看来当序列 A 的第 i 位上数字在原来 n 个数中恰好是第 i 大时,i 号位置就是稳定的。并且, 当序列中恰好有 m 个位置是稳定时, 她的开心度就会加 1。那么, 她想知道, 她的开心度最大可能是多少。由于Brunhilda 的开心度可能会很大,所以你只要输出开心度除以 1000000007 的余数。【输入格原创 2021-08-11 22:49:10 · 298 阅读 · 0 评论 -
欧拉筛(数论)
突然发现自己欧拉筛写错了。。。。。。我欧拉筛写错了???!!!今天复习一下欧拉筛欧拉筛和埃氏筛的区别,无非就是时间复杂度差了那么一个log n(但有时差之毫厘,谬之千里)埃氏筛的复杂度高就高在有重复,而欧拉筛没有。详见代码:#include<bits/stdc++.h>using namespace std;int n,cnt,prime[10000000],vis[10000000];void ouler(int x){ for(int i=2;i<=x;i++)原创 2021-08-11 23:33:55 · 98 阅读 · 0 评论 -
球场大佬(数论)
球场大佬 时限:1000ms 空限:128M 题目描述: 每天下午,古猴都会去打羽毛球。但是古猴实在是太强了,他必须要到一些比较 强的场去打。但是每个羽毛球场都有许多的人排着队,每次都只能上四个人,每个人 都有自己的能力值,然而这四个人的总能力的高低与否才是古猴是否决定参加这个场 的关键。 每四个人的总能力值的定义是:任意选两个与另两个 PK,能力值的贡献是较高的 一组减去较低的一组。比如能力值为 5 和 7 的去 PK 6 和 10 的差值,那么用较高的减 去较低的就是原创 2021-08-10 22:08:55 · 95 阅读 · 0 评论 -
组合数问题(数论)
组合数问题(problem)【问题描述】 定义"组合数"S(n,m)代表将 n 个不同的元素拆分成 m 个非空集合的方案 数.举个栗子,将{1,2,3}拆分成 2 个集合有({1},{2,3}),({2},{1,3}),({3},{1,2})三种拆分 方法.小猫想知道,如果给定 n,m 和 k,对于所有的 0<=i<=n,0<=j<=min(i,m),有多少对 (i,j),满足 S(i,j)是 k 的倍数. 注意,0 也是 k 的倍数,S(0,0)=1,对于 i>=1,S(i原创 2021-08-09 22:14:25 · 539 阅读 · 0 评论