数据分析技术---MLP 和 BP 神经网络流程;K-means 算法流程

一、实验目的:

1 、掌握 MLP BP 神经网络流程,并实现分类任务
2 、掌握 K-means 算法流程,并实现聚类任务

二、实验任务

1.使用MLP实现水果分类:

实验描述:

有一个关于水果的数据集,其中包含两个特征:水果的颜色和形状, 使用多层感知机(MLP )对水果进行分类。数据集分为训练集和测试 集,使用训练集训练 MLP 神经网络模型,使用测试集评估模型的性能,预测给定水果的类别。

实验思路:

准备数据集,然后使用多层感知机(MLP)来训练一个模型,并使用测试集来评估模型的性能。首先,将文本数据转换为数值形式。使用独热编码(One-Hot Encoding)来处理颜色和形状特征。使用scikit-learn的OneHotEncoder或LabelEncoder与pandas库来准备数据。构建MLP模型:使用scikit-learn的MLPClassifier来构建多层感知机模型。使用训练数据来训练MLP模型。使用测试数据来评估模型的性能,通常使用准确率作为评价指标。最后预测给定水果的类别。

实验代码:

#MLP 实现水果分类
import pandas as pd
from sklearn.preprocessing import LabelEncoder, OneHotEncoder
from sklearn.compose import ColumnTransformer
from sklearn.neural_network import MLPClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score

# 加载数据
train_data = pd.DataFrame({
    '水果颜色': ['红色', '绿色', '橙色', '红色', '橙色', '绿色', '黄色'],
    '水果形状': ['圆形', '椭圆形', '圆形', '圆形', '椭圆形', '圆形', '圆形'],
    '类别': ['苹果', '梨', &#
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值