Acwing_算法基础课_1

NOTE: 主要是学习期间的代码整理,y总算法基础课

1. 快速排序

// 快速排序
void quick_sort(int q[], int l, int r)
{
	if(l >= r) return;
	
	int i = l - 1, j = r + 1, x = q[(l + r) >> 1];
	while(i < j){
		do i++; while(q[i] < x);
		do j--; while(q[j] > x);
		if(i < j) swap(q[i], q[j]);
	}
	
	quick_sort(q, l, j);
	quick_sort(q, j + 1, r);
}

2. 归并排序

ll a[N], tmp[N];
ll res;  // 逆序对个数

void merge_sort(ll a[], ll l, ll r)
{
	if(l >= r) return ;
	ll mid = (l + r) >> 1;
	
	merge_sort(a, l, mid);
	merge_sort(a, mid + 1, r);
	
	ll k = 0, i = l, j = mid + 1;
	while(i <= mid && j <= r){
		if(a[i] <= a[j]) tmp[k++] = a[i++];
		else tmp[k++] = a[j++], res += mid - i + 1;
	}
	while(i <= mid) tmp[k++] = a[i++];
	while(j <= r) tmp[k++] = a[j++];
	
	for(i = l, j = 0; i <= r; i++, j++) a[i] = tmp[j];
	
}

3. 二分

😉整数二分

bool check(int x) {/* ... */} // 检查x是否满足某种性质

// 区间[l, r]被划分成[l, mid]和[mid + 1, r]时使用:
int bsearch_1(int l, int r)
{
    while (l < r)
    {
        int mid = l + r >> 1;
        if (check(mid)) r = mid;    // check()判断mid是否满足性质
        else l = mid + 1;
    }
    return l;
}

// 区间[l, r]被划分成[l, mid - 1]和[mid, r]时使用:
int bsearch_2(int l, int r)
{
    while (l < r)
    {
        int mid = l + r + 1 >> 1;  //🆘🆘🆘
        if (check(mid)) l = mid;
        else r = mid - 1;
    }
    return l;
}

😉浮点数二分

bool check(double x){  }

double bsearch_3(double l, double r)
{
    const double eps = 1e-6;
    while(r - l > eps){
        double mid = (l + r) / 2;
        if(check(mid)) r = mid;
        else l = mid;
    }
    return l;
}

4. 高精度

1️⃣高精度加法

#include<bits/stdc++.h>
using namespace std;

// C = A + B
vector<int> add(vector<int> &A, vector<int> &B)
{
	vector<int> C;
	int t = 0;
	for(int i = 0; i < A.size() || i < B.size(); i++){
		if(i < A.size()) t += A[i];
		if(i < B.size()) t += B[i];
		C.push_back(t % 10);
		t /= 10;
	}
	if(t) C.push_back(t);
	return C;
}


int main()
{
	string a, b;
	vector<int>A, B;
	
	cin >> a >> b;
	for(int i = a.size() - 1; i >= 0; i--) A.push_back(a[i] - '0');
	for(int i = b.size() - 1; i >= 0; i--) B.push_back(b[i] - '0');
	
	auto C = add(A, B);
	
	for(int i = C.size() - 1; i >= 0; i--) cout << C[i];
	return 0;
		
}

2️⃣高精度减法

#include<bits/stdc++.h>
using namespace std;

bool cmp(vector<int> &A, vector<int> &B)
{
	if(A.size() != B.size()) return A.size() > B.size();
	else {
		for(int i = A.size() - 1; i >= 0; i--){
			if(A[i] != B[i]) return A[i] > B[i];
		}
	}
	return true;
}

// C = A - B
vector<int> substract(vector<int> &A, vector<int> &B)
{
	vector<int> C;
	for(int i = 0, t = 0; i < A.size(); i++){
		t = A[i] - t;
		if(i < B.size()) t -= B[i];
		C.push_back((t + 10) % 10);
		if(t < 0) t = 1;
		else t = 0;
	}
	while(C.size() > 1 && C.back() == 0) C.pop_back();
	
	return C;
}


int main()
{
	string a, b;
	cin >> a >> b;
	
	vector<int> A, B, C;
	for(int i = a.size() - 1; i >= 0; i--) A.push_back(a[i] - '0');
	for(int i = b.size() - 1; i >= 0; i--) B.push_back(b[i] - '0');
	
	if(cmp(A, B)){
		C = substract(A, B);
	}else{
		C = substract(B, A);
		cout << "-";
	}
	
	for(int i = C.size() - 1; i >= 0; i--) cout << C[i];
	
	return 0;
	
}

3️⃣高精度乘法

#include<bits/stdc++.h>
using namespace std;

// C = A * b
vector<int> mul(vector<int> &A, int b)
{
	vector<int> C;
	int t = 0;
	for(int i = 0; i < A.size() || t; i++){
		if(i < A.size()) t += A[i] * b;
		C.push_back(t % 10);
		t /= 10;
	}
	while(C.size() > 1 && C.back() == 0) C.pop_back();
	return C;
	
}

int main()
{
	string a;
	int b;
	cin >> a >> b;
	vector<int> A;
	
	for(int i = a.size() - 1; i >= 0; i--) A.push_back(a[i] - '0');
	
	auto C = mul(A, b);
	
	for(int i = C.size() - 1; i >= 0; i--) cout << C[i];
	return 0;
	
}

4️⃣高精度除法

#include<bits/stdc++.h>
using namespace std;


// A / b = C ...... r
vector<int> div(vector<int> &A, int b, int &r)
{
	vector<int> C;
	for(int i = A.size() - 1; i >= 0; i--){
		r = r * 10 + A[i];
		C.push_back(r / b);
		r %= b;
	}
	reverse(C.begin(), C.end());

	while(C.size() > 1 && C.back() == 0) C.pop_back();
	return C;
}


int main()
{
	string a;
	int b, r = 0;
	cin >> a >> b;
	vector<int> A;
	
	for(int i = a.size() - 1; i >= 0; i--) A.push_back(a[i] - '0');
	
	auto C = div(A, b, r);
	
	for(int i = C.size() - 1; i >= 0; i--) cout << C[i];
	cout << endl << r;
	return 0;
	
}

5. 前缀和

  • 一维前缀和
s[i] = a[1] + a[2] + ... + a[n]
a[l] + .... + a[r] = s[r] - s[l - 1]
  • 二维前缀和
s[i, j] = 第 i 行 j 列左上部分所有元素的和
以 (x1, y1) 为左上角, (x2, y2)为右下角的子矩阵的和为:
    s[x2, y2] - s[x1 - 1, y2] - s[x2, y1 - 1] + s[x1 - 1][y1 - 1]
for(int i = 1; i <= n; i++){
    for(int j = 1; j <= m; j++){
        cin >> a[i][j];
        s[i][j] = s[i - 1][j] + s[i][j - 1] - s[i - 1][j - 1] + a[i][j];
    }
}
void solve()
{
    ll x1, y1, x2, y2;
    cin >> x1 >> y1 >> x2 >> y2;
    ll res = s[x2][y2] - s[x1 - 1][y2] - s[x2][y1 - 1] + s[x1 - 1][y1 - 1];
    cout << res << endl;
}

6. 差分

  • 一维差分
给区间[l, r]中的每个数加上c:
    B[l] += c, B[r + 1] -= c
  • 二维差分
给以(x1, y1)为左上角,(x2, y2)为右下角的子矩阵中的所有元素加上c:
S[x1, y1] += c, S[x2 + 1, y1] -= c, S[x1, y2 + 1] -= c, S[x2 + 1, y2 + 1] += c
    // 左上右下 加 c
b[i][j] += b[i - 1][j] + b[i][j - 1] - b[i - 1][j - 1];

7. 位运算

求n的第k位数字: n >> k & 1
返回n的最后一位1:lowbit(n) = n & -n  // eg: 6 * -6 = 2

8. 双指针

for (int i = 0, j = 0; i < n; i ++ )
{
    while (j < i && check(i, j)) j ++ ;

    // 具体问题的逻辑
}
常见问题分类:
    (1) 对于一个序列,用两个指针维护一段区间
    (2) 对于两个序列,维护某种次序,比如归并排序中合并两个有序序列的操作

9. 离散化

vector<int> alls; // 存储所有待离散化的值
sort(alls.begin(), alls.end()); // 将所有值排序
alls.erase(unique(alls.begin(), alls.end()), alls.end()); // 去除重复元素

// 二分求出 x 对应的离散化的值
int find(int x) // 找到第一个 >= x 的位置 
{
    // return lower_bound(alls.begin(), alls.end(), x) - alls.begin() + 1;
    int l = 0, r = alls.size() - 1;
    while(l < r){
        int mid = l + r >> 1;
        if(alls[mid] >= x) r = mid;
        else l = mid + 1;
    }
    return r + 1; // 映射到 1, 2, ... , n
}

10. 区间合并

vector<PII> segs;

void merge(vector<PII> &segs)
{
    vector<PII> res;
    sort(segs.begin(), segs.end());

    int st = -2e9, ed = -2e9;
    for (auto seg : segs)
        if (ed < seg.first)
        {
            if (st != -2e9) res.push_back({st, ed});
            st = seg.first, ed = seg.second;
        }
        else ed = max(ed, seg.second);

    if (st != -2e9) res.push_back({st, ed});

    segs = res;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值