1143.最长公共子序列
给定两个字符串 text1
和 text2
,返回这两个字符串的最长 公共子序列 的长度。如果不存在 公共子序列 ,返回 0
。
一个字符串的 子序列 是指这样一个新的字符串:它是由原字符串在不改变字符的相对顺序的情况下删除某些字符(也可以不删除任何字符)后组成的新字符串。
- 例如,
"ace"
是"abcde"
的子序列,但"aec"
不是"abcde"
的子序列。
两个字符串的 公共子序列 是这两个字符串所共同拥有的子序列。
解题思路:
确认dp数组含义:dp[i][j] text1第i-1个字符结尾和text2第j-1个字符结尾的公共子串最大长度
递推公式:如果当前遍历的字符相等,index共同倒退一步,当前状态dp[i][j]来源于dp[i-1][j-1],如果不相等,当前状态dp[i][j]来源于各后退一个的index最大值max(dp[i-1][j], dp[i][j-1])
初始化:dp[0][j] = 0, dp[i][0] = 0
遍历顺序:for i in range(len(text1)+1), for j in range(len(text2)+1)
打印dp数组
class Solution:
def longestCommonSubsequence(self, text1: str, text2: str) -> int:
dp = [[0]*(len(text2)+1) for _ in range(len(text1)+1)]
res = 0
for i in range(1, len(text1)+1):
for j in range(1, len(text2)+1):
if text1[i-1] == text2[j-1]:
dp[i][j] = dp[i-1][j-1]+1
else:
dp[i][j] = max(dp[i-1][j], dp[i][j-1])
res = max(res, dp[i][j])
return res
1035.不相交的线
在两条独立的水平线上按给定的顺序写下 nums1
和 nums2
中的整数。
现在,可以绘制一些连接两个数字 nums1[i]
和 nums2[j]
的直线,这些直线需要同时满足:
-
nums1[i] == nums2[j]
- 且绘制的直线不与任何其他连线(非水平线)相交。
请注意,连线即使在端点也不能相交:每个数字只能属于一条连线。
以这种方法绘制线条,并返回可以绘制的最大连线数。
解题思路:
本题与上一题本质相同
class Solution:
def maxUncrossedLines(self, nums1: List[int], nums2: List[int]) -> int:
dp = [[0]*(len(nums2)+1) for _ in range(len(nums1)+1)]
res = 0
for i in range(1, len(nums1)+1):
for j in range(1, len(nums2)+1):
if nums1[i-1] == nums2[j-1]:
dp[i][j] = dp[i-1][j-1]+1
else:
dp[i][j] = max(dp[i-1][j], dp[i][j-1])
res = max(res, dp[i][j])
return res
53. 最大子序和
给你一个整数数组 nums
,请你找出一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。子数组 是数组中的一个连续部分。
解题思路:
贪心算法
class Solution:
def maxSubArray(self, nums: List[int]) -> int:
count = 0
max_count = float('-inf')
for i in range(len(nums)):
count += nums[i]
if count>max_count:
max_count = count
if count<0:
#start counting over
count = 0
return max_count
动态规划:
确认dp含义:dp[i]以nums[i] 结尾的数组最大值
递推公式:dp[i] = max(dp[i-1]+nums[i], nums[i])当前面的数加起来小于nums[i],直接从nums[i]计算
初始化:dp[0] = nums[i]
遍历顺序:从前到后遍历
打印dp数组
class Solution:
def maxSubArray(self, nums: List[int]) -> int:
if len(nums)<=1:
return nums[0]
dp = [0]*len(nums)
#初始化
dp[0] = nums[0]
res = nums[0]
for i in range(1,len(nums)):
dp[i] = max(dp[i-1]+nums[i], nums[i])
res = max(res, dp[i])
return res