代码随想录Day 46|Leetcode|Python|1143.最长公共子序列 ● 1035.不相交的线 ● 53. 最大子序和 动态规划

1143.最长公共子序列 

给定两个字符串 text1 和 text2,返回这两个字符串的最长 公共子序列 的长度。如果不存在 公共子序列 ,返回 0 。

一个字符串的 子序列 是指这样一个新的字符串:它是由原字符串在不改变字符的相对顺序的情况下删除某些字符(也可以不删除任何字符)后组成的新字符串。

  • 例如,"ace" 是 "abcde" 的子序列,但 "aec" 不是 "abcde" 的子序列。

两个字符串的 公共子序列 是这两个字符串所共同拥有的子序列。

解题思路:

确认dp数组含义:dp[i][j] text1第i-1个字符结尾和text2第j-1个字符结尾的公共子串最大长度

递推公式:如果当前遍历的字符相等,index共同倒退一步,当前状态dp[i][j]来源于dp[i-1][j-1],如果不相等,当前状态dp[i][j]来源于各后退一个的index最大值max(dp[i-1][j], dp[i][j-1])

初始化:dp[0][j] = 0, dp[i][0] = 0

遍历顺序:for i in range(len(text1)+1), for j in range(len(text2)+1)

打印dp数组

class Solution:
    def longestCommonSubsequence(self, text1: str, text2: str) -> int:
        dp = [[0]*(len(text2)+1) for _ in range(len(text1)+1)]
        res = 0
        for i in range(1, len(text1)+1):
            for j in range(1, len(text2)+1):
                if text1[i-1] == text2[j-1]:
                    dp[i][j] = dp[i-1][j-1]+1
                else:
                    dp[i][j] = max(dp[i-1][j], dp[i][j-1])
                res = max(res, dp[i][j])
        return res

1035.不相交的线

在两条独立的水平线上按给定的顺序写下 nums1 和 nums2 中的整数。

现在,可以绘制一些连接两个数字 nums1[i] 和 nums2[j] 的直线,这些直线需要同时满足:

  •  nums1[i] == nums2[j]
  • 且绘制的直线不与任何其他连线(非水平线)相交。

请注意,连线即使在端点也不能相交:每个数字只能属于一条连线。

以这种方法绘制线条,并返回可以绘制的最大连线数。

解题思路:

本题与上一题本质相同

class Solution:
    def maxUncrossedLines(self, nums1: List[int], nums2: List[int]) -> int:
        dp = [[0]*(len(nums2)+1) for _ in range(len(nums1)+1)]
        res = 0
        for i in range(1, len(nums1)+1):
            for j in range(1, len(nums2)+1):
                if nums1[i-1] == nums2[j-1]:
                    dp[i][j] = dp[i-1][j-1]+1
                else:
                    dp[i][j] = max(dp[i-1][j], dp[i][j-1])
                res = max(res, dp[i][j])
        return res

 53. 最大子序和 

给你一个整数数组 nums ,请你找出一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。子数组 是数组中的一个连续部分。

解题思路:

贪心算法

class Solution:
    def maxSubArray(self, nums: List[int]) -> int:
        count = 0
        max_count = float('-inf')
        for i in range(len(nums)):
            count += nums[i]
            if count>max_count:
                max_count = count
            if count<0:
                #start counting over
                count = 0
        return max_count

动态规划:

确认dp含义:dp[i]以nums[i] 结尾的数组最大值

递推公式:dp[i] = max(dp[i-1]+nums[i], nums[i])当前面的数加起来小于nums[i],直接从nums[i]计算

初始化:dp[0] = nums[i]

遍历顺序:从前到后遍历

打印dp数组

class Solution:
    def maxSubArray(self, nums: List[int]) -> int:
        if len(nums)<=1:
            return nums[0]
        dp = [0]*len(nums)
        #初始化
        dp[0] = nums[0]
        res = nums[0]
        for i in range(1,len(nums)):
            dp[i] = max(dp[i-1]+nums[i], nums[i])
            res = max(res, dp[i])
        return res

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值