自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(20)
  • 收藏
  • 关注

原创 Docker 的基本概念和优势,以及在应用程序开发中的实际应用。

隔离性和安全性:Docker 容器之间是隔离的,一个容器的问题不会影响其他容器。总的来说,Docker 的出现极大地简化了应用程序的开发、部署和管理过程,提高了开发人员的工作效率,同时也为应用程序的可移植性和扩展性带来了便利。微服务架构:Docker 容器可以作为微服务架构中的一个组件,每个微服务可以打包成一个独立的容器,使得应用程序的开发、部署和维护更加灵活和高效。开发环境的搭建和管理:开发人员可以使用 Docker 来快速搭建开发环境,确保团队成员都能在相同的环境中开发和测试应用程序。

2025-04-15 09:16:20 193

原创 C++ 数据结构大揭秘:从基础到实战

C++ 中的数据结构各有特点,适用于不同的场景。数组适合处理固定大小的数据,向量提供了动态调整大小的能力,链表适用于频繁插入和删除操作,栈和队列则遵循特定的访问规则。通过掌握这些数据结构,你可以更加高效地解决各种编程问题。希望本文能帮助你更好地理解和运用 C++ 中的数据结构。

2025-04-07 09:43:49 274

原创 深入探索 C++ 的 unordered_map:原理、用法与实战案例

是 C++ 标准库中的关联容器,它存储的元素是键值对(key - value pairs)。每个键(key)都是唯一的,通过键可以快速查找对应的值(value)。与map不同的是,不保证元素的顺序,它是基于哈希表(Hash Table)实现的,这使得它在查找、插入和删除操作上具有平均常数时间复杂度O(1)。以下是几种常见的定义和初始化// 定义一个存储string到int映射的unordered_map// 插入元素// 另一种插入方式// 初始化时直接插入元素{"fox", 6}

2025-04-07 09:24:00 795

原创 装饰器模式在软件开发中的精妙运用

通过本文对装饰器模式的概念、结构、代码示例、应用场景的介绍,希望你能掌握这一强大的设计模式,并在实际项目中灵活运用,为你的软件作品增添更多精彩。例如,RedBorderDecorator类继承自ShapeDecorator,它可以在调用decoratedShape.draw方法后,再添加绘制红色边框的逻辑,从而为图形对象添加红色边框的装饰效果。通过装饰器模式,我们可以创建日志记录装饰器和性能监控装饰器,将它们应用到需要监控的方法所在的对象上,实现功能的动态添加,同时保持业务逻辑代码的纯净。

2025-04-06 17:08:58 489

原创 设计模式在游戏开发中的应用

设计模式在游戏开发中有着广泛的应用,能够帮助开发者解决许多实际问题。状态模式可以有效地管理角色的不同状态,观察者模式可以实现游戏事件的通知和处理,工厂模式可以将游戏对象的创建逻辑封装起来。合理运用这些设计模式可以提高游戏代码的质量和可维护性,让游戏开发更加高效和顺利。希望本文对你在游戏开发中应用设计模式有所帮助。

2025-04-06 16:40:55 608

原创 探秘工厂模式:软件世界的高效生产秘籍

工厂模式是一种创建型设计模式,它提供了一种创建对象的方式,将对象的创建和使用分离。简单来说,就是把创建对象的逻辑封装在一个工厂类中,使用者只需要告诉工厂需要什么样的对象,工厂就会生产出相应的对象,而使用者无需关心对象是如何创建的。工厂模式在软件开发中是非常实用的设计模式,不同类型的工厂模式适用于不同的场景。简单工厂模式适合创建对象逻辑简单的场景;工厂方法模式适用于需要遵循开闭原则,经常需要添加新的产品类型的场景;抽象工厂模式适用于创建一组相关产品的场景。

2025-04-06 16:33:53 534

原创 最全讲解设计模式之单例模式

在 C++ 中实现单例模式有多种方式,每种方式都有其优缺点。在选择实现方式时,需要根据具体的应用场景和需求来决定。如果对性能要求较高且在单线程环境下,可以使用懒汉式(线程不安全);如果在多线程环境下,且对性能要求不是特别高,可以使用懒汉式(线程安全);如果希望实现简单且不介意提前实例化,可以使用饿汉式;如果使用的是 C++11 及以后的标准,推荐使用 Meyers 单例。希望通过本文的介绍,你对 C++ 中实现单例模式有了更深入的理解。在实际开发中,合理运用单例模式可以提高代码的可维护性和性能。

2025-04-06 16:27:09 280

原创 回溯算法与剪枝策略:解锁复杂问题的神奇密码

回溯算法以其强大的逻辑和独特的搜索方式,为我们解决复杂组合优化问题提供了有力工具。而剪枝策略的加入,更是让回溯算法如虎添翼,在面对大规模问题时也能高效运行。通过对八皇后问题的深入剖析与实现,我们不仅掌握了回溯算法和剪枝策略的核心原理,还学会了如何运用 C++ 和 Python 两种语言将这些算法付诸实践。希望这篇文章能成为你探索算法世界的一把钥匙,让你在算法的海洋中畅游,不断发现新的精彩。如果你在阅读过程中有任何疑问,或者想要分享自己对回溯算法和剪枝策略的独特见解,欢迎在评论区留言交流!

2025-04-06 13:35:38 830

原创 回溯算法与剪枝策略:攻克八皇后问题的利器

回溯算法本质上是一种深度优先搜索算法,它通过递归的方式系统地探索问题的解空间。在搜索过程中,一旦发现当前的选择无法得到有效的解,就会撤销上一步的选择,回溯到上一个状态,继续尝试其他的可能性,直到找到所有可能的解或确定无解为止。定义问题的解空间:明确问题的所有可能解的集合。确定搜索规则:按照一定的顺序遍历解空间。判断当前解是否合法:在每一步选择后,检查当前的部分解是否满足问题的约束条件。回溯操作:如果当前解不合法或无法继续扩展,撤销上一步的选择,回到上一个状态。

2025-04-06 13:16:17 643

原创 贪心算法:原理、实现与应用

贪心算法是一种简单而高效的算法策略,通过在每一步做出局部最优选择来解决优化问题。虽然贪心算法并不总是能得到全局最优解,但在许多问题中,它可以快速找到近似最优解或精确的最优解。在实际应用中,需要仔细分析问题的特性,确定贪心选择策略,并证明其正确性。希望这篇博客能帮助你理解贪心算法的基本原理、实现方法和应用场景。如果你有任何问题或建议,欢迎留言讨论!

2025-04-06 13:06:18 259

原创 关于算法优化的经典书籍和教程推荐

以下是一些关于算法优化的经典书籍和教程推荐:

2025-04-03 11:42:01 363

原创 算法探秘:从基础到进阶的深度剖析

算法的世界就像一片广袤无垠的海洋,我们今天所探索的只是其中的一小部分。从基础的排序和搜索算法,到高级的动态规划和贪心算法,每一种算法都有其独特的应用场景和价值。通过不断学习和掌握这些算法,我们能够提升自己解决问题的能力,编写出更加高效、优质的程序。希望这篇文章能激发你对算法的兴趣,让你在算法的海洋中继续探索,发现更多的精彩。

2025-04-03 10:51:18 776

原创 AI 前沿洞察:剖析大语言模型最新架构优化,从原理到性能提升

比如给定提示 “描绘春天的公园”,基础模型可能生成 “公园有树,花在天上” 这样不合理文本,优化后的模型则生成 “春天的公园生机勃勃,嫩绿的树木枝繁叶茂,五彩斑斓的花朵竞相绽放,空气中弥漫着清新的花香,人们在公园里悠闲地散步、嬉戏”。在当今科技飞速发展的时代,大语言模型(LLM)已成为人工智能领域的焦点,从日常对话的智能语音助手,到协助创作的写作工具,大语言模型的身影无处不在,其强大的语言处理能力令人惊叹。这背后,是一系列复杂而精妙的架构优化在支撑,正是这些优化让模型性能实现飞跃。

2025-04-03 10:07:50 630

原创 算法通关指南:深度解析动态规划算法之背包问题

动态规划(Dynamic Programming,简称 DP)是一种在数学、计算机科学和经济学等领域广泛应用的优化算法策略。其核心思想是将一个复杂的问题分解为一系列相互关联的子问题,通过求解这些子问题并保存它们的解,避免重复计算,从而提高解决整个问题的效率。动态规划算法通常适用于具有最优子结构性质和子问题重叠性质的问题。最优子结构性质意味着问题的最优解可以通过其子问题的最优解来构造;子问题重叠性质则表示在求解过程中,许多子问题会被重复计算。

2025-04-03 09:55:24 862

原创 巧用 DeepSeek,让工作效率飞升

在当今快节奏的工作环境中,每一位职场人都在探寻提升效率的秘诀。DeepSeek 作为一款强大的 AI 工具,宛如开启高效工作之门的钥匙,为我们带来诸多便利。今天,就来和大家分享如何利用 DeepSeek 助力日常工作。

2025-04-02 18:05:01 623

原创 AI 的出现,是否能替代 IT 从业者?

在科技飞速发展的当下,AI(人工智能)的崛起引发了诸多讨论,其中一个备受关注的话题便是:AI 是否会替代 IT 从业者?这一问题犹如投入平静湖面的巨石,在 IT 行业激起层层涟漪,今天我们就来深入剖析一番。

2025-04-02 17:44:06 229

原创 深入计算机组成原理:硬件世界的基石

在计算机科学的宏大体系中,计算机组成原理是连接软件与硬件的桥梁,它如同幕后英雄,默默支撑着我们日常使用的各种软件和应用。今天,让我们一同深入计算机组成原理的奇妙世界,探索其中的关键知识点,并通过直观的图示加深理解。

2025-04-02 17:30:00 1032 1

原创 揭开计算机组成原理的神秘面纱:探索机器的核心奥秘

在计算机科学的宏大体系中,计算机组成原理是最为基础且关键的领域之一,它如同精密仪器的设计蓝图,详细描绘了计算机硬件系统的构成与运作机制。理解计算机组成原理,不仅能让我们知晓计算机如何执行指令、处理数据,更能为后续深入学习计算机相关技术,如操作系统、编译原理等,奠定坚实基础。接下来,让我们一同走进这个充满魅力的领域,深入探讨其中的重要知识点,并通过直观的图示辅助理解。

2025-04-02 16:52:11 1008 1

原创 探秘数据结构:机器学习基石的深度解析

数组是最基本的数据结构之一,它在内存中以连续的方式存储元素。例如,在社交网络分析中,我们可以将用户视为节点,用户之间的关注关系视为边,通过图算法来分析社交网络的结构和传播规律。例如,在文本处理中,我们可以使用哈希表来记录每个单词出现的次数,通过哈希函数将单词映射到一个唯一的地址,快速实现单词计数的更新和查询。正如我们在 deep - ML 网站上不断探索机器学习的奥秘一样,深入理解和熟练运用数据结构知识,将为我们在机器学习领域的学习和实践提供坚实的支撑,帮助我们更好地构建高效的模型,解决复杂的实际问题。

2025-04-02 16:44:49 585 1

原创 # 探索类似deep - ML的机器学习学习网站

其中,吴恩达教授的《机器学习》课程堪称经典中的经典,以通俗易懂的方式讲解机器学习的基本概念、算法原理,如线性回归、逻辑回归、神经网络等,配合大量实际案例,让学习者轻松理解算法在实际场景中的应用。这里汇聚了海量的数据科学和机器学习竞赛 ,从预测房价到疾病诊断等各种实际场景的竞赛项目,为学习者提供了绝佳的实践机会。以麻省理工学院在edX上开设的机器学习课程为例,课程内容严谨深入,从机器学习的基础数学知识,如概率论、线性代数等讲起,逐步深入到复杂的模型构建和算法优化,像支持向量机(SVM)的原理与应用。

2025-04-02 16:40:35 457

本论文为2023年全国大学生数学建模竞赛b题### 海洋测绘基于多波束的海域水深测线优化模型:提升海洋测深效率与精度的设计与应用

内容概要:本文探讨了基于多波束的海域水深测线优化模型,旨在避免测量数据冗余、降低人力物力消耗并提高数据测量效率。文章通过四个问题逐步建立了数学模型,包括:①覆盖宽度及相邻条带重叠率模型,通过正弦定理求出波束测深的覆盖宽度和重叠率;②多波束测深覆盖宽度模型,推导出覆盖宽度与多波束换能器开角、坡度、海水深度及测线方向夹角的关系式;③最优测线方向模型,证明了在给定海水深度下,最大覆盖宽度测线方向沿南北方向;④贪心算法优化模型,针对特定海域,通过局部最优的贪心模型优化测线路径,确保测线覆盖整个待测海域,控制条带重叠率在20%以下并最短化测线总长度。模型结果表明,贪心模型下测线条数为54,测线总长度为464075.00m,重叠面积之和占总面积比例17.28%,漏测面积占比2.27%,重叠率超过20%的部分长度为0。 适合人群:具备一定数学建模基础,从事海洋测绘或相关领域工作的科研人员和技术人员。 使用场景及目标:①用于海洋测绘领域,优化多波束测深系统的测线布设;②提高测深效率,减少数据冗余和测量成本;③为海底地形勘测和海洋资源开发提供科学依据。 其他说明:该模型可以推广应用于海底勘测等领域,同时可以进一步考虑实际测量中的不确定因素,如海洋噪声和海水波动等,以提高模型的精度和实用性。

2025-04-06

知识检索、大语言模型、知识图谱、检索增强RAG

知识检索、大语言模型、知识图谱、检索增强RAG,部署本地大语言模型实现AI检索系统

2025-04-03

基于大语言模型的任务流式知识检索系统研究.pptx

基于大语言模型的任务流式知识检索系统研究.pptx

2025-04-03

python,机器学习,KNN,GAN,k-means,SVM

python,机器学习,KNN,GAN,k-means,SVM

2025-04-02

手动实现java springboot依赖注入

手动实现java springboot依赖注入

2025-04-02

webservlet实现请求体输入什么响应体输出什么

webservlet实现请求体输入什么响应体输出什么

2025-04-02

websocket实现请求体输入什么响应体输出什么

websocket实现请求体输入什么响应体输出什么

2025-04-02

java socket实现请求体输入什么响应体输出什么

java socket实现请求体输入什么响应体输出什么

2025-04-02

javaservlet实现请求体输入什么响应体就输出什么

javaservlet实现请求体输入什么响应体就输出什么

2025-04-02

springboot知识文档共享系统

Springboot+mysql+nginx实现springboot知识文档共享系统,大致说下部署吧: 关于数据库要改成自己的用户名密码,以及需要添加本地maven依赖(网上下载),然后添加springboot并启动后path后的路径复制后启动nginx后修改conf中的location,大致就是这样

2025-04-02

编译原理语法分析实验代码

LL(1)文法判别等等

2024-02-05

Anaconda3-64bit下载安装一个压缩包就够了

里面有安装和配置的详细解答,不用再去官网了。直接按照步骤一步步就能安装好了,没有很复杂的路径或者其他的。

2023-10-27

基于质点模型和动态规划模型的医疗仓储基地选址研究 摘要

本文针对四川省建立医疗物资基于质点模型和动态规划模型的医疗仓储基地选址研究 摘要 几十年来,各国人民经历了多次自然灾害,对人类的生存产生了巨大的威胁。因面临大规模自然灾害时急需物资,同时考虑到未来面临同样问题时能快速供应基本物资的问题,本文针对四川省建立医疗物资仓储基地的选址与存储问题,建立了两个数学模型。 针对问题一,本文采用几何中心模型(质心模型)。通过对全省各地医院经纬度位置坐标进行分析,计算出每个可能的位置与所有医院距离和的最小值,最终找到了理想中最短总飞行距离的最佳仓储基地建设地点,即资阳市,最短距离为37.4822。确定最佳地点后,可以平均将医疗资源分配到全省,提高资源利用效率,降低调度成本。 针对问题二,本文使用动态规划模型,在基地有限的容量下,需要对医疗物资进行优选,将总体价值最大且体积在容量范围内的医疗物品优先储备。我们依据附件2中的医疗物品数据,按照价值、体积等约束条件,构建了适宜的动态规划模型。通过迭代优化,我们最终找到了可以使总价值最大的医疗物资的组合,即ms3、ms10、ms18、ms70,产生的最大价值为4470仓储基地的选址与存储问题,建立了两个数学模型。

2023-10-27

命令行与菜单(数独游戏)

C++实现

2023-10-27

非确定有穷状态机的确定化(NFA to DFA)python的可视化实现

move和closure函数单独实现,有两个用于测试的txt文本

2023-10-27

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除