【做题笔记】P1966 [NOIP2013 提高组] 火柴排队

本文探讨了NOIP2013提高组竞赛中的P1966题目,即如何通过最小化交换次数使得两个数列的对应元素距离平方和最小。通过分析,得出将数列按升序或降序排列可以降低该和,从而转换问题为求解序列的逆序对数量。使用归并排序算法可有效地解决这个问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目:https://www.luogu.com.cn/problem/P1966


首先分析题目定义的距离式子:
∑ i = 1 n ( a i − b i ) 2 \sum_{i = 1}^{n}(a_i-b_i)^2 i=1n(aibi)2
是不是没有头绪?

再化简一下:
∑ i = 1 n a i 2 − 2 a b + b i 2 \sum_{i = 1}^{n}{a_i}^2-2ab+{b_i}^2 i=1nai22ab+bi2
= ∑ i = 1 n a i 2 + b i 2 − ∑ i = 1 n 2 a b =\sum_{i = 1}^{n}{a_i}^2+{b_i}^2 - \sum_{i = 1}^n2ab =i=1nai2+bi2i=1n2ab

很显然 ∑ i = 1 n a i 2 + b

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值