欧拉函数的一些性质及欧拉降幂

性质

1.对于质数p, φ ( p ) = p − 1 φ§=p-1 φ§=p−1。
2.若p为质数, n = p k n=p^k n=pk,则 φ ( n ) φ(n) φ(n)= p k p^k pk- p k − 1 p^{k-1} pk−1。
3.欧拉函数是积性函数,但不是完全积性函数。若m,n互质,则 φ ( m ∗ n ) = φ ( m ) ∗ φ ( n ) φ(m*n)=φ(m)φ(n) φ(m∗n)=φ(m)∗φ(n)。特殊的,当m=2,n为奇数时,φ(2n)=φ(n)。
4.当n>2时,φ(n)是偶数。
5.小于n的数中,与n互质的数的总和为:φ(n) * n / 2 (n>1)。
6. n = ∑ d ∣ n φ ( d ) n=\sum_{d|n}{φ(d)} n=∑d∣n​φ(d),即n的因数(包括1和它自己)的欧拉函数之和等于n。

link
自己写取模函数可以不用判断

#include <bits/stdc++.h>
using namespace std;
#define N 1000010
 
typedef long long ll;
 
ll phi[N],prime[N];
ll tot;
void init(){
    phi[1]=1;
    for(ll i=2;i<N;i++){
        if(!phi[i]){
            phi[i]=i-1;
            prime[tot++]=i;
        }
        for(ll j=0;j<tot && i*prime[j]<N;j++){
            if(i%prime[j]) phi[i*prime[j]] = phi[i]*(prime[j]-1);
            else{
                phi[i*prime[j]] = phi[i]*prime[j];
                break;
            }
        }
    }
}
 
ll MOD(ll x,ll m)
{
	return x>m ? x%m+m : x;
}
ll Pow(ll x,ll y,ll m)
{
	ll ans=1;
	while(y){
		if(y&1) ans = MOD(ans*x,m);
		x = MOD(x*x,m);
		y >>= 1;
	}
	return ans;
}
 
ll solve(ll a,ll b,ll p){
	if(p==1)return a;
	if(b==0)return 1;
	ll P=solve(a,b-1,phi[p]);
	return Pow(a,P,p);
}
 
int main()
{
	init();
	int t;scanf("%d",&t);
	while(t--){
		ll a,b,mod;
		scanf("%lld%lld%lld",&a,&b,&mod);
		ll ans = solve(a,b,mod);
		printf("%lld\n",ans%mod);
	}
	return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值