树上点分治 P4178 Tree

树上点分治就是利用重心的 性质进行分治
本题的合并原理是进行容斥操作
我们分三种情况去讨论
1如果点对在子树里 那么我们直接递归分治
2如果一点是重心 一个点 在子树 我们可以暴力求
3 如果两个点分别位于不同的子树
那么我们根据容斥原理
将所有的点对求出-在同一个子树里的点对进行分治

总的来说 树上点分治是一种 思想 (不是数据结构

被acwing上点分治模板卡了一个小时 一直tle 不懂

#include <bits/stdc++.h>
using namespace  std;
//#define  int long long
typedef long long ll;
typedef unsigned long long ull;
typedef pair<int, int> pii;
typedef vector<int> vi;
#define fi first
#define se second
#define pb  push_back
#define inf 1ll<<62
#define endl "\n"
#define max(a,b) ((a)>(b)?(a):(b))
#define min(a,b) ((a)<(b)?(a):(b))
#define de_bug(x) cerr << #x << "=" << x << endl
#define all(a) a.begin(),a.end()
#define IOS   std::ios::sync_with_stdio(false);cin.tie(0);cout.tie(0);
#define  fer(i,a,b)  for(int i=a;i<=b;i++)
#define  der(i,a,b)  for(int i=a;i>=b;i--)
const int mod = 1e9 + 7;
const int N = 2e5 + 10;
int n, m , k;
vector<pii> g[N];
int vis[N];
int q[N], p[N], cnt, idx2;

int  get_sz(int u, int fa) {
	if(vis[u])return  0;
	int ans = 1;
	for(auto a : g[u]) {
		int v = a.fi;
		if(v != fa)
			ans += get_sz(v, u);
	}
	return ans;
}
int get_wc(int u, int fa, int tot, int wc) {
	if(vis[u]) return 0;
	int sum = 1;
	int  ma = -1;
	for(auto a : g[u]) {
		int v = a.fi;
		if(v == fa)continue;
		int t = get_wc(v, u, tot, wc);
		ma = max(ma, t);
		sum += t;
	}
	ma = max(ma, tot - sum);
	if(ma <= tot / 2)wc = u;
	return sum;
}
void get_d(int u, int fa, int dis, int &cnt) {
	if(vis[u]) return ;
	q[cnt++] = dis;
	for(auto a : g[u]) {
		int v = a.fi;
		int w = a.se;
		if(v == fa)continue;
		get_d(v, u, dis + w , cnt);
	}
}
int get_pre(int p[], int k) {
	sort(p, p + k);
	int ans = 0;
	for(int i = k - 1, j = -1; i >= 0; i--) {
		while(j + 1 < i && p[j + 1] + p[i] <= m)j++;
		j = min(j, i - 1);
		ans += j + 1;
	}
	return ans;
}
int get_ans(int u) {
	if(vis[u])return 0;
	int ans = 0;
	get_wc(u, -1, get_sz(u, -1), u);
	vis[u] = 1;
	int idx1 = 0;
	for(auto a : g[u]) {
		int v = a.fi;
		int w = a.se;
		idx2 = 0;
		get_d(v, -1, w, idx2);
		ans -= get_pre(q, idx2);
		for(int i = 0; i < idx2; i++) {
			if(q[i] <= m) ans++;
			p[idx1++] = q[i];
		}
	}
	ans += get_pre(p, idx1);
	for(auto a : g[u]) {
		int v = a.fi;
		ans += get_ans(v);
	}
	return ans;
}
void solve() {
		cin >> n ;
		//if((!n) && (!m))break;
		for(int i = 0; i <= n; i++) {
			vis[i] = 0;
			// cnt=0;
			g[i].clear();
		}
		for(int i = 0; i < n - 1; i++) {
			int a, b, c;
			cin >> a >> b >> c;
			g[a].push_back({b, c});
			g[b].push_back({a, c});
		}
		cin>>m;
		cout << get_ans(1) << endl;
	
}
int main() {
	IOS;
	int _ = 1;
	//cin>>_;
	while( _-- )
		solve();
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值