进击的奶牛
题目描述
Farmer John 建造了一个有 N N N( 2 ≤ N ≤ 1 0 5 2 \leq N \leq 10 ^ 5 2≤N≤105) 个隔间的牛棚,这些隔间分布在一条直线上,坐标是 x 1 , x 2 , ⋯ , x N x _ 1, x _ 2, \cdots, x _ N x1,x2,⋯,xN( 0 ≤ x i ≤ 1 0 9 0 \leq x _ i \leq 10 ^ 9 0≤xi≤109)。
他的 C C C( 2 ≤ C ≤ N 2 \leq C \leq N 2≤C≤N)头牛不满于隔间的位置分布,它们为牛棚里其他的牛的存在而愤怒。为了防止牛之间的互相打斗,Farmer John 想把这些牛安置在指定的隔间,所有牛中相邻两头的最近距离越大越好。那么,这个最大的最近距离是多少呢?
输入格式
第 1 1 1 行:两个用空格隔开的数字 N N N 和 C C C。
第 2 ∼ N + 1 2 \sim N+1 2∼N+1 行:每行一个整数,表示每个隔间的坐标。
输出格式
输出只有一行,即相邻两头牛最大的最近距离。
样例 #1
样例输入 #1
5 3
1
2
8
4
9
样例输出 #1
3
代码
#include <iostream>
#include <algorithm> // 提供了 sort() 函数原型
using std::cin, std::cout;
int n, c, x[100005]; // n 是牛棚的数量, c 是牛的数量, x 是 n 个牛棚的坐标
bool check(int dis) // 检查距离为 mid 时,这些牛棚是否能容纳下所有牛
{
// count 是这些牛棚能容纳的牛的最大数量, place 是上一个牛安置的位置
// count 初始已经容纳一头牛了,这头牛所在的牛棚坐标为 0
int count = 1, place = 0;
for (int i = 1; i < n; i++)
if (x[i] - x[place] >= dis) // 若第 i 个牛棚的与上一个牛安置的牛棚的坐标之差大于 dis
count++, place = i; // 则说明这些牛棚能容纳下 i 头牛,然后更新 place 到 i
return (count >= c); // 返回 count 是否大于等于 c 的 bool 值
}
int main()
{
cin >> n >> c; // 读取牛棚和牛的数量
for (int i = 0; i < n; i++)
cin >> x[i]; // 读取牛棚的坐标
std::sort(x, x + n); // 对牛棚的坐标从小到大排序
// left 是两头牛间隔的最小距离, right 是两头牛间隔的最大距离, ans 是答案
int left = 0, right = x[n - 1] - x[0], ans = 0;
while (left < right)
{
// 防止 left + right 越界,故不用 (left + right) / 2
int mid = left + (right - left) / 2; // mid 是区间 [left, right] 上的中间值
if (check(mid)) // 如果这些牛棚支持两头牛间隔 mid 距离
ans = mid, left = mid + 1; // 则先记录答案,再把区间缩小到右子区间上
else
right = mid; // 否则将区间缩小到左子区间上
}
cout << ans;
return 0;
}