A-B 数对
题目背景
出题是一件痛苦的事情!
相同的题目看多了也会有审美疲劳,于是我舍弃了大家所熟悉的 A+B Problem,改用 A-B 了哈哈!
题目描述
给出一串正整数数列以及一个正整数 C C C,要求计算出所有满足 A − B = C A - B = C A−B=C 的数对的个数(不同位置的数字一样的数对算不同的数对)。
输入格式
输入共两行。
第一行,两个正整数 N , C N,C N,C。
第二行, N N N 个正整数,作为要求处理的那串数。
输出格式
一行,表示该串正整数中包含的满足 A − B = C A - B = C A−B=C 的数对的个数。
样例 #1
样例输入 #1
4 1
1 1 2 3
样例输出 #1
3
提示
对于 75 % 75\% 75% 的数据, 1 ≤ N ≤ 2000 1 \leq N \leq 2000 1≤N≤2000。
对于 100 % 100\% 100% 的数据, 1 ≤ N ≤ 2 × 1 0 5 1 \leq N \leq 2 \times 10^5 1≤N≤2×105, 0 ≤ a i < 2 30 0 \leq a_i <2^{30} 0≤ai<230, 1 ≤ C < 2 30 1 \leq C < 2^{30} 1≤C<230。
2017/4/29 新添数据两组
思路
先把数组变为单调递增的数组,使用 a l g o r i t h m algorithm algorithm 库中的 s o r t ( ) sort() sort() 函数。
再使用快慢指针,如果快指针指向的元素减去慢指针指向的元素的差为 c c c ,则结果数加一。
接着思考一个问题,假如数组中的元素有重复该怎么办?这个问题可以通过添加第三个指针来解决——第三个指针指向 满足题目要求的 重复元素中最后一个元素的 下一个元素,比如说 c c c 为4时有这样一个数组:1 3 5 5 5 6。对于慢指针指向第一个元素的情况,我们可以让次快指针指向第一个5,也就是数组中的第3个元素,然后让最快指针指向6,也就是数组中第6个元素,结果加上 最快指针指向元素的下标 与 次快指针指向元素的下标 之差,也就是3。
最后,让慢指针依次从第一个元素指向倒数第二个元素,在每轮循环中让两个快指针前进到指定位置,然后把它们的差值加到结果上即可。
注意:每轮循环开始不需要重置两个快指针,原因如下:
下一轮循环时慢指针指向下一个更大的元素,对于次快指针指向元素的下标 与 慢指针指向元素的下标 之差,如果差值小于
c
c
c ,则需要让两个快指针前进;如果差值等于
c
c
c ,则两个快指针不动;如果差值大于
c
c
c ,继续更新慢指针,因为即使两个快指针后退也找不到合适的元素。故总结出两个快指针不需要重置的结论。
代码
#include <iostream>
#include <algorithm> // 提供std::sort()函数原型
using std::cin, std::cout;
const int ArSize = 2e5 + 5; // 数组大小
int n, c, arr[ArSize]; // n为数组长度,c为差,arr为接收数据的数组
long long ans; // ans表示答案
int main() {
cin >> n >> c;
for (int i = 1; i <= n; i++) {
cin >> arr[i];
}
std::sort(arr + 1, arr + n + 1); // 对arr排序
// 使用三个指针,i是慢指针,j是次快指针,k是最快指针
int i, j = 1, k = 1;
for (int i = 1; i <= n - 1; i++) {
while (j <= n && arr[j] - arr[i] < c) {
j++;
} // 让j指向第一个减去arr[i]后,大于等于c的元素
while (k <= n && arr[k] - arr[i] <= c) {
k++;
} // 让k指向第一个减去arr[i]后,大于c的元素
ans += k - j;
}
cout << ans;
return 0;
}