LeetCode 1633, 122, 239

1633. 各赛事的用户注册率

题目链接

1633. 各赛事的用户注册率

  • Users有字段user_iduser_name
  • Register有字段contest_iduser_id

要求

  • 编写解决方案统计出各赛事的用户注册百分率,保留两位小数
  • 返回的结果表按 percentage 的 降序 排序,若相同则按 contest_id升序 排序。

知识点

  1. rount():四舍五入函数。
  2. count():统计个数函数。
  3. 多表查询:from后跟多张表,然后使用where限制笛卡尔积的部分数据(多表查询的结果是两张表排列组合的结果,这个结果被称为笛卡尔积)。
  4. 子表查询:子表查询就是将从表查询到的结果作为另一个表放在from后边。
  5. order by + desc/asc:排序,比如order by num表示按num进行(默认)升序排序,效果等价于order by num ascorder by num desc表示按num进行降序排序。

思路

要求各赛事的用户注册百分率,首先要求出参加各赛事的用户数用户的总数(求用户的总数可以键一张子表),然后用前者除以后者就可以得出各赛事的用户注册百分率,但要注意的是求出来的百分率要乘100;然后再根据题目中的两个条件进行排序。

代码

select
    contest_id,
    round(count(*) * 100 / cnt.num, 2) percentage
from
    Users s,
    Register r,
    (
        select
            count(*) num
        from
            Users
    ) cnt
where
    s.user_id = r.user_id
group by
    contest_id
order by
    percentage desc,
    contest_id

122. 买卖股票的最佳时机 II

题目链接

122. 买卖股票的最佳时机 II

标签

贪心 数组 动态规划

思路

本题的股票可以随时卖和买,所以不需要计划的很长远,只要一天的价格比前一天的高,就在前一天买,然后在这天卖,使用了一种贪心的思想:只顾当前(局部)的最优解,局部最优解的总和就是全局最优解。

代码

class Solution {
    public int maxProfit(int[] prices) {
        int i = 1, res = 0;
        while (i < prices.length) {
            int profit = prices[i] - prices[i - 1];
            if (profit > 0) {
                res += profit;
            }
            i++;
        }
        return res;
    }
}

239. 滑动窗口最大值

题目链接

239. 滑动窗口最大值

标签

队列 数组 滑动窗口 单调队列 堆(优先队列)

思路

本题建议使用优先队列来解答,优先队列指的是插入队列的所有元素都有一个优先级,按照优先级的大小进行排序,优先级越大(或越小),越靠近队列头部(或尾部),其中,优先级可以是数字的大小,也可以是字符串的长度等可以量化的数量。
优先队列的实现也很简单,在这个类中内置一个双端队列,从头部执行获取删除的操作,从尾部执行添加的操作,每次添加时从尾部向前扫描,直到扫描到优先级比待添加元素的优先级高的元素,将这些优先级低于待添加元素优先级的元素从队列中删除。
了解优先队列的实现后,就可以开始做题了。把滑动窗口想象成一个优先队列,每次滑动时都往队列中添加一个值,按理来说也应该从队列中删除一个值,但其实不然,在这个优先队列中只有最大值会被使用到,所以只要那个该删除的值不是最大值,就不需要删除它。

代码

class Solution {
    public int[] maxSlidingWindow(int[] nums, int k) {
        int index = 0;
        int[] res = new int[nums.length - k + 1];
        PriorityQueue queue = new PriorityQueue();
        for (int i = 0; i < nums.length; i++) {
            // 队列中已经有k个元素了,并且该队列的最大值还等于窗口前面的元素,对于这种队列,取出这个最大值
            if (i >= k && nums[i - k] == queue.peek()) {
                queue.poll();
            }
            queue.offer(nums[i]);
            // 从第k - 1个数开始
            if (i >= (k - 1)) {
                res[index++] = queue.peek();
            }
        }
        return res;
    }
    private static class PriorityQueue {
        LinkedList<Integer> deque = new LinkedList<>();
        int peek() {
            return deque.peekFirst();
        }
        void poll() {
            deque.pollFirst();
        }
        void offer(int n) {
            while (!deque.isEmpty() && deque.peekLast() < n) {
                deque.pollLast();
            }
            deque.offerLast(n);
        }
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值