Java数据结构与算法之二叉树的遍历、查找、删处操作的小练习

二叉树遍历的说明:
使用前序,中序和后序对下面的二叉树进行遍历.
1)前序遍历:先输出父节点,再遍历左子树和右子树
2)中序遍历:先遍历左子树,再输出父节点,再遍历右子树
3)后序遍历:先遍历左子树,再遍历右子树,最后输出父节点
4)小结:看输出父节点的顺序,就确定是前序,中序还是后序

分析二叉树前序,中序,后序的遍历步骤:
1. 创建一颗二叉树
2. 前序遍历
1)先输出当前节点(初始的时候是root节点)
2)如果左子节点不为空,则递归继续前序遍历
3)如果右子节点不为空,则递归继续前序遍历
3.中序遍历
1)如果当前节点的左子节点不为空,则递归中序遍历,
2)输出当前节点
3}如果当前节点的右子节点不为空,则递归中序遍历
4. 后序遍历
1)如果当前节点的左子节点不为空,则递归后序遍历,
2)如果当前节点的右子节点不为空,则递归后序遍历
3)输出当前节点

使用前序,中序,后序的方式来查询指定的结点
前序查找思路:
1.先判断当前结点的no是否等于要查找的
2.如果是相等,则返回当前结点
3.如果不等,则判断当前结点的左子节点是否为空,如果不为空,则递归前序查找
4.如果左递归前序查找,找到结点,则返回,否则继续判断,当前的结点的右子节点是否为空,
如果不空,则继续向右递归前序查找。
中序查找思路:
1.判断当前结点的左子节点是否为空,如果不为空,则递归中序查找
2.如果找到,则返回,如果没有找到,就和当前结点比较,如果是则返回当前结点,否则继续进行右递归的中序查找
3. 如果右递归中序查找,找到就返回,否则返回null
后序查找思路:
1.判断当前结点的左子节点是否为空,如果不为空,则递归后序查找
2.如果找到,就返回,如果没有找到,就判断当前结点的右子节点是否为空,
如果不为空,则右递归进行后序查找,如果找到,就返回
3.就和当前结点进行,比如,如果是则返回,否则返回null

完成删除结点的操作
规定:
1)如果删除的节点是叶子节点,则册除该节点
2)如果删除的节点是非叶子节点,则删除该子树
思路
首先 先处理:
考虑如果树是空树root,如果只有一个root结点,则等价将二叉树置空
然后进行下面步骤:
1.因为我们的二叉树是单向的,所以我们是判断当前结点的子结点是否需要删除结点,而不能去判断当前这个结点是不是需要删除结点
2.如果当前结点的左子结点不为空,并且左子结点就是要删除结点,就将this.left=null;并且就返回(结束递归删除)
3.如果当前结点的右子结点不为空,并且右子结点就是要删除结点,就将this.right=null;并且就返回(结束递归删除)
4.如果第2和第3步没有删除结点,那么我们就需要向左子树进行递归删除
5.如果第4步也没有删除结点,则应当向右子树进行递归删除。
package com.wrx.dataStructures.BinaryTree;
/**
 * @auther Len901
 * @time 2022-10-10-22:08
 */
/*
二叉树遍历的说明:
使用前序,中序和后序对下面的二叉树进行遍历.
1)前序遍历:先输出父节点,再遍历左子树和右子树
2)中序遍历:先遍历左子树,再输出父节点,再遍历右子树
3)后序遍历:先遍历左子树,再遍历右子树,最后输出父节点
4)小结:看输出父节点的顺序,就确定是前序,中序还是后序

分析二叉树前序,中序,后序的遍历步骤:
1. 创建一颗二叉树
2. 前序遍历
1)先输出当前节点(初始的时候是root节点)
2)如果左子节点不为空,则递归继续前序遍历
3)如果右子节点不为空,则递归继续前序遍历
3.中序遍历
1)如果当前节点的左子节点不为空,则递归中序遍历,
2)输出当前节点
3}如果当前节点的右子节点不为空,则递归中序遍历
4. 后序遍历
1)如果当前节点的左子节点不为空,则递归后序遍历,
2)如果当前节点的右子节点不为空,则递归后序遍历
3)输出当前节点

使用前序,中序,后序的方式来查询指定的结点
前序查找思路:
1.先判断当前结点的no是否等于要查找的
2.如果是相等,则返回当前结点
3.如果不等,则判断当前结点的左子节点是否为空,如果不为空,则递归前序查找
4.如果左递归前序查找,找到结点,则返回,否则继续判断,当前的结点的右子节点是否为空,
如果不空,则继续向右递归前序查找。
中序查找思路:
1.判断当前结点的左子节点是否为空,如果不为空,则递归中序查找
2.如果找到,则返回,如果没有找到,就和当前结点比较,如果是则返回当前结点,否则继续进行右递归的中序查找
3. 如果右递归中序查找,找到就返回,否则返回null
后序查找思路:
1.判断当前结点的左子节点是否为空,如果不为空,则递归后序查找
2.如果找到,就返回,如果没有找到,就判断当前结点的右子节点是否为空,
如果不为空,则右递归进行后序查找,如果找到,就返回
3.就和当前结点进行,比如,如果是则返回,否则返回null

完成删除结点的操作
规定:
1)如果删除的节点是叶子节点,则册除该节点
2)如果删除的节点是非叶子节点,则删除该子树
思路
首先 先处理:
考虑如果树是空树root,如果只有一个root结点,则等价将二叉树置空
然后进行下面步骤:
1.因为我们的二叉树是单向的,所以我们是判断当前结点的子结点是否需要删除结点,而不能去判断当前这个结点是不是需要删除结点
2.如果当前结点的左子结点不为空,并且左子结点就是要删除结点,就将this.left=null;并且就返回(结束递归删除)
3.如果当前结点的右子结点不为空,并且右子结点就是要删除结点,就将this.right=null;并且就返回(结束递归删除)
4.如果第2和第3步没有删除结点,那么我们就需要向左子树进行递归删除
5.如果第4步也没有删除结点,则应当向右子树进行递归删除。
 */
public class BinaryTreeDemo {
    public static void main(String[] args) {
        //先需要创建一颗二叉树
        BinaryTree binaryTree = new BinaryTree();
        //创建需要的节点
        HeroNode root = new HeroNode(1);
        HeroNode heroNode2 = new HeroNode(2);
        HeroNode heroNode3 = new HeroNode(3);
        HeroNode heroNode4 = new HeroNode(4);
        HeroNode heroNode5 = new HeroNode(5);
        //说明:我们先手动创建该二叉树,后面我们学习递归的方式创建二叉树
        root.setLeft(heroNode2);
        root.setRight(heroNode3);
        heroNode3.setRight(heroNode4);
        heroNode3.setLeft(heroNode5);
        binaryTree.setRoot(root);
        //前序遍历
        System.out.println("前序遍历");
        //输出一把
        binaryTree.preOrder();
        //中序遍历
        System.out.println("中序遍历");
        //输出一把
        binaryTree.infixOrder();
        //后序遍历
        System.out.println("后序遍历");
        //输出一把
        binaryTree.postOrder();
        //前序遍历
        System.out.println("前序遍历查找:");
        HeroNode resNode1=binaryTree.preOrderSearch(5);
        HeroNode resNode2=binaryTree.preOrderSearch(15);
        if (resNode1!=null){
            System.out.println("找到了,信息为:"+resNode1.getNo());
        }else {
            System.out.println("没有找到!");
        }
        if (resNode2!=null){
            System.out.println("找到了,信息为:"+resNode2.getNo());
        }else {
            System.out.println("没有找到!");
        }
        //中序遍历
        System.out.println("中序遍历查找:");
        HeroNode resNode3=binaryTree.infixOrderSearch(3);
        HeroNode resNode4=binaryTree.infixOrderSearch(9);
        if (resNode3!=null){
            System.out.println("找到了,信息为:"+resNode3.getNo());
        }else {
            System.out.println("没有找到!");
        }
        if (resNode4!=null){
            System.out.println("找到了,信息为:"+resNode4.getNo());
        }else {
            System.out.println("没有找到!");
        }
        //后序遍历
        System.out.println("后序遍历查找:");
        HeroNode resNode5=binaryTree.postOrderSearch(6);//
        HeroNode resNode6=binaryTree.postOrderSearch(1);
        if (resNode5!=null){
            System.out.println("找到了,信息为:"+resNode5.getNo());
        }else {
            System.out.println("没有找到!");
        }
        if (resNode6!=null){
            System.out.println("找到了,信息为:"+resNode6.getNo());
        }else {
            System.out.println("没有找到!");
        }

        System.out.println("删除叶子节点:");
        System.out.println("删除前的前序遍历二叉树:");
        //输出一把
        binaryTree.preOrder();
        binaryTree.delNode(5);
        System.out.println("删除后的前序遍历二叉树:");
        //输出一把
        binaryTree.preOrder();

        System.out.println("删除非叶子节点:");
        System.out.println("删除前的前序遍历二叉树:");
        //输出一把
        binaryTree.preOrder();
        binaryTree.delNode(3);
        System.out.println("删除后的前序遍历二叉树:");
        //输出一把
        binaryTree.preOrder();
    }
}
//定义BinaryTree二叉树
class BinaryTree{
    private HeroNode root;//根节点
    public void setRoot(HeroNode root) {
        this.root = root;
    }
    //删除节点
    public void delNode(int no){
        if (root!=null){
            //如果只有一个root节点,这里立即判断root是不是就是要删除的节点
            if (root.getNo()==no){
                root=null;
            }else{
                //递归删除
                root.delNode(no);
            }
        }else {
            System.out.println("空树,不能删除");
        }
    }
    //前序遍历
    public void preOrder(){
        if (this.root!=null){
            this.root.preOrder();
        }else {
            System.out.println("二叉树为空,无法遍历");
        }
    }
    //中序遍历
    public void infixOrder(){
        if (this.root!=null){
            this.root.infixOrder();
        }else{
            System.out.println("二叉树为空,无法遍历");
        }
    }
    //后序遍历
    public void postOrder(){
        if (this.root!=null){
            this.root.postOrder();
        }else{
            System.out.println("二叉树为空,无法遍历");
        }
    }
    //前序遍历
    public HeroNode preOrderSearch(int no){
        if (root!=null){
            return root.preOrderSearch(no);
        }else {
            return null;
        }
    }
    //中序遍历
    public  HeroNode infixOrderSearch(int no){
        if (root!=null){
            return root.infixOrderSearch(no);
        }else {
            return null;
        }
    }
    //后序遍历
    public HeroNode postOrderSearch(int no){
        if (root!=null){
            return root.postOrderSearch(no);
        }else {
            return null;
        }
    }
}
//先创建HeroNode节点
class HeroNode{
    private int no;
    private HeroNode left;
    private HeroNode right;
    public HeroNode(int no) {
        this.no = no;
    }
    public int getNo() {
        return no;
    }
    public void setNo(int no) {
        this.no = no;
    }
    public HeroNode getLeft() {
        return left;
    }
    public void setLeft(HeroNode left) {
        this.left = left;
    }
    public HeroNode getRight() {
        return right;
    }
    public void setRight(HeroNode right) {
        this.right = right;
    }

    @Override
    public String toString() {
        return "HeroNode{" +
                "no=" + no +
                '}';
    }
    //递归删除节点
    public void delNode(int no){
        //如果当前结点的左子结点不为空,并且左子结点就是要删除结点,就将this.left=null;并且就返回(结束递归删除)
        if (this.left!=null&&this.left.no==no){
            this.left=null;
            return;
        }
        //如果当前结点的右子结点不为空,并且右子结点就是要删除结点,就将this.right=null;并且就返回(结束递归删除)
        if (this.right!=null&&this.right.no==no){
            this.right=null;
            return;
        }
        //如果第2和第3步没有删除结点,那么我们就需要向左子树进行递归删除
        if (this.left!=null){
            this.left.delNode(no);
        }
        //如果第4步也没有删除结点,则应当向右子树进行递归删除。
        if (this.right!=null){
            this.right.delNode(no);
        }
    }
    //编写前序遍历的方法
    public void preOrder() {
        System.out.println(this);//先输出父节点
        //递归向左子树前序遍历
        if (this.left != null) {
            this.left.preOrder();
        }
        //递归向右子树前序遍历
        if (this.right != null) {
            this.right.preOrder();
        }
    }
    //编写中序遍历的方法
    public void infixOrder(){
        //递归向左子树前序遍历
        if (this.left!=null){
            this.left.infixOrder();
        }
        //输出父节点
        System.out.println(this);
        //递归向右子树前序遍历
        if (this.right!=null){
            this.right.infixOrder();
        }
    }
    //编写后序遍历的方法
    public void postOrder(){
        if (this.left!=null){
            this.left.postOrder();
        }
        if (this.right!=null){
            this.right.postOrder();
        }
        System.out.println(this);
    }
    //前序遍历查找
    /**
     *
     * @param no 查找no
     * @return 如果找到就返回该Node,如果没有找到就返回null
     */
    public HeroNode preOrderSearch(int no){
        //比较当前节点是不是
        if (this.no==no){
            return this;
        }
        //判断当前节点的左节点是否为空,如果不为空,则递归前序查找
        //如果左递归前序查找,找到节点,则返回
        HeroNode resNode=null;
        if (this.left!=null){
            resNode=this.left.preOrderSearch(no);
        }
        if (resNode!=null){//说明我们左子树找到
            return resNode;
        }
        //当前的节点的右子节点是否为空,如果不空,则继续向右递归前序查找
        if (this.right!=null){
            resNode=this.right.preOrderSearch(no);
        }
        return resNode;
    }
    //中序遍历查找
    public HeroNode infixOrderSearch(int no){
        //判断当前节点的左节点是否为空,如果不为空,则递归中序查找
        HeroNode resNode=null;
        if (this.left!=null){
            resNode=this.left.infixOrderSearch(no);
        }
        if (resNode!=null){//说明我们左子树找到
            return resNode;
        }
        //如果找到,则返回,如果没有找到,就和当前节点比较,如果是则返回当前节点
        if (this.no==no){
            return this;
        }
        //否则继续进行右递归的中序查找
        if (this.right!=null){
            resNode=this.right.infixOrderSearch(no);
        }
        return resNode;
    }
    //后续遍历查找
    public HeroNode postOrderSearch(int no){
        //判断当前节点的左子节点是否为空,如果不为空,则递归后续查找
        HeroNode resNode=null;
        if (this.left!=null){
            resNode=this.left.postOrderSearch(no);
        }
        if (resNode!=null){//说明我们左子树找到
            return resNode;
        }
        //如果左子树没有找到,则向右子树递归进行后续遍历查找
        if (this.right!=null){
            resNode=this.right.infixOrderSearch(no);
        }
        if (resNode!=null){//说明我们左子树找到
            return resNode;
        }
        //如果左右子树都没有找到,就比较当前节点是不是
        if (this.no==no){
            return this;
        }
        return resNode;
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Len901

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值