二叉树遍历的说明:
使用前序,中序和后序对下面的二叉树进行遍历.
1)前序遍历:先输出父节点,再遍历左子树和右子树
2)中序遍历:先遍历左子树,再输出父节点,再遍历右子树
3)后序遍历:先遍历左子树,再遍历右子树,最后输出父节点
4)小结:看输出父节点的顺序,就确定是前序,中序还是后序
分析二叉树前序,中序,后序的遍历步骤:
1. 创建一颗二叉树
2. 前序遍历
1)先输出当前节点(初始的时候是root节点)
2)如果左子节点不为空,则递归继续前序遍历
3)如果右子节点不为空,则递归继续前序遍历
3.中序遍历
1)如果当前节点的左子节点不为空,则递归中序遍历,
2)输出当前节点
3}如果当前节点的右子节点不为空,则递归中序遍历
4. 后序遍历
1)如果当前节点的左子节点不为空,则递归后序遍历,
2)如果当前节点的右子节点不为空,则递归后序遍历
3)输出当前节点
使用前序,中序,后序的方式来查询指定的结点
前序查找思路:
1.先判断当前结点的no是否等于要查找的
2.如果是相等,则返回当前结点
3.如果不等,则判断当前结点的左子节点是否为空,如果不为空,则递归前序查找
4.如果左递归前序查找,找到结点,则返回,否则继续判断,当前的结点的右子节点是否为空,
如果不空,则继续向右递归前序查找。
中序查找思路:
1.判断当前结点的左子节点是否为空,如果不为空,则递归中序查找
2.如果找到,则返回,如果没有找到,就和当前结点比较,如果是则返回当前结点,否则继续进行右递归的中序查找
3. 如果右递归中序查找,找到就返回,否则返回null
后序查找思路:
1.判断当前结点的左子节点是否为空,如果不为空,则递归后序查找
2.如果找到,就返回,如果没有找到,就判断当前结点的右子节点是否为空,
如果不为空,则右递归进行后序查找,如果找到,就返回
3.就和当前结点进行,比如,如果是则返回,否则返回null
完成删除结点的操作
规定:
1)如果删除的节点是叶子节点,则册除该节点
2)如果删除的节点是非叶子节点,则删除该子树
思路
首先 先处理:
考虑如果树是空树root,如果只有一个root结点,则等价将二叉树置空
然后进行下面步骤:
1.因为我们的二叉树是单向的,所以我们是判断当前结点的子结点是否需要删除结点,而不能去判断当前这个结点是不是需要删除结点
2.如果当前结点的左子结点不为空,并且左子结点就是要删除结点,就将this.left=null;并且就返回(结束递归删除)
3.如果当前结点的右子结点不为空,并且右子结点就是要删除结点,就将this.right=null;并且就返回(结束递归删除)
4.如果第2和第3步没有删除结点,那么我们就需要向左子树进行递归删除
5.如果第4步也没有删除结点,则应当向右子树进行递归删除。
package com.wrx.dataStructures.BinaryTree;
/**
* @auther Len901
* @time 2022-10-10-22:08
*/
/*
二叉树遍历的说明:
使用前序,中序和后序对下面的二叉树进行遍历.
1)前序遍历:先输出父节点,再遍历左子树和右子树
2)中序遍历:先遍历左子树,再输出父节点,再遍历右子树
3)后序遍历:先遍历左子树,再遍历右子树,最后输出父节点
4)小结:看输出父节点的顺序,就确定是前序,中序还是后序
分析二叉树前序,中序,后序的遍历步骤:
1. 创建一颗二叉树
2. 前序遍历
1)先输出当前节点(初始的时候是root节点)
2)如果左子节点不为空,则递归继续前序遍历
3)如果右子节点不为空,则递归继续前序遍历
3.中序遍历
1)如果当前节点的左子节点不为空,则递归中序遍历,
2)输出当前节点
3}如果当前节点的右子节点不为空,则递归中序遍历
4. 后序遍历
1)如果当前节点的左子节点不为空,则递归后序遍历,
2)如果当前节点的右子节点不为空,则递归后序遍历
3)输出当前节点
使用前序,中序,后序的方式来查询指定的结点
前序查找思路:
1.先判断当前结点的no是否等于要查找的
2.如果是相等,则返回当前结点
3.如果不等,则判断当前结点的左子节点是否为空,如果不为空,则递归前序查找
4.如果左递归前序查找,找到结点,则返回,否则继续判断,当前的结点的右子节点是否为空,
如果不空,则继续向右递归前序查找。
中序查找思路:
1.判断当前结点的左子节点是否为空,如果不为空,则递归中序查找
2.如果找到,则返回,如果没有找到,就和当前结点比较,如果是则返回当前结点,否则继续进行右递归的中序查找
3. 如果右递归中序查找,找到就返回,否则返回null
后序查找思路:
1.判断当前结点的左子节点是否为空,如果不为空,则递归后序查找
2.如果找到,就返回,如果没有找到,就判断当前结点的右子节点是否为空,
如果不为空,则右递归进行后序查找,如果找到,就返回
3.就和当前结点进行,比如,如果是则返回,否则返回null
完成删除结点的操作
规定:
1)如果删除的节点是叶子节点,则册除该节点
2)如果删除的节点是非叶子节点,则删除该子树
思路
首先 先处理:
考虑如果树是空树root,如果只有一个root结点,则等价将二叉树置空
然后进行下面步骤:
1.因为我们的二叉树是单向的,所以我们是判断当前结点的子结点是否需要删除结点,而不能去判断当前这个结点是不是需要删除结点
2.如果当前结点的左子结点不为空,并且左子结点就是要删除结点,就将this.left=null;并且就返回(结束递归删除)
3.如果当前结点的右子结点不为空,并且右子结点就是要删除结点,就将this.right=null;并且就返回(结束递归删除)
4.如果第2和第3步没有删除结点,那么我们就需要向左子树进行递归删除
5.如果第4步也没有删除结点,则应当向右子树进行递归删除。
*/
public class BinaryTreeDemo {
public static void main(String[] args) {
//先需要创建一颗二叉树
BinaryTree binaryTree = new BinaryTree();
//创建需要的节点
HeroNode root = new HeroNode(1);
HeroNode heroNode2 = new HeroNode(2);
HeroNode heroNode3 = new HeroNode(3);
HeroNode heroNode4 = new HeroNode(4);
HeroNode heroNode5 = new HeroNode(5);
//说明:我们先手动创建该二叉树,后面我们学习递归的方式创建二叉树
root.setLeft(heroNode2);
root.setRight(heroNode3);
heroNode3.setRight(heroNode4);
heroNode3.setLeft(heroNode5);
binaryTree.setRoot(root);
//前序遍历
System.out.println("前序遍历");
//输出一把
binaryTree.preOrder();
//中序遍历
System.out.println("中序遍历");
//输出一把
binaryTree.infixOrder();
//后序遍历
System.out.println("后序遍历");
//输出一把
binaryTree.postOrder();
//前序遍历
System.out.println("前序遍历查找:");
HeroNode resNode1=binaryTree.preOrderSearch(5);
HeroNode resNode2=binaryTree.preOrderSearch(15);
if (resNode1!=null){
System.out.println("找到了,信息为:"+resNode1.getNo());
}else {
System.out.println("没有找到!");
}
if (resNode2!=null){
System.out.println("找到了,信息为:"+resNode2.getNo());
}else {
System.out.println("没有找到!");
}
//中序遍历
System.out.println("中序遍历查找:");
HeroNode resNode3=binaryTree.infixOrderSearch(3);
HeroNode resNode4=binaryTree.infixOrderSearch(9);
if (resNode3!=null){
System.out.println("找到了,信息为:"+resNode3.getNo());
}else {
System.out.println("没有找到!");
}
if (resNode4!=null){
System.out.println("找到了,信息为:"+resNode4.getNo());
}else {
System.out.println("没有找到!");
}
//后序遍历
System.out.println("后序遍历查找:");
HeroNode resNode5=binaryTree.postOrderSearch(6);//
HeroNode resNode6=binaryTree.postOrderSearch(1);
if (resNode5!=null){
System.out.println("找到了,信息为:"+resNode5.getNo());
}else {
System.out.println("没有找到!");
}
if (resNode6!=null){
System.out.println("找到了,信息为:"+resNode6.getNo());
}else {
System.out.println("没有找到!");
}
System.out.println("删除叶子节点:");
System.out.println("删除前的前序遍历二叉树:");
//输出一把
binaryTree.preOrder();
binaryTree.delNode(5);
System.out.println("删除后的前序遍历二叉树:");
//输出一把
binaryTree.preOrder();
System.out.println("删除非叶子节点:");
System.out.println("删除前的前序遍历二叉树:");
//输出一把
binaryTree.preOrder();
binaryTree.delNode(3);
System.out.println("删除后的前序遍历二叉树:");
//输出一把
binaryTree.preOrder();
}
}
//定义BinaryTree二叉树
class BinaryTree{
private HeroNode root;//根节点
public void setRoot(HeroNode root) {
this.root = root;
}
//删除节点
public void delNode(int no){
if (root!=null){
//如果只有一个root节点,这里立即判断root是不是就是要删除的节点
if (root.getNo()==no){
root=null;
}else{
//递归删除
root.delNode(no);
}
}else {
System.out.println("空树,不能删除");
}
}
//前序遍历
public void preOrder(){
if (this.root!=null){
this.root.preOrder();
}else {
System.out.println("二叉树为空,无法遍历");
}
}
//中序遍历
public void infixOrder(){
if (this.root!=null){
this.root.infixOrder();
}else{
System.out.println("二叉树为空,无法遍历");
}
}
//后序遍历
public void postOrder(){
if (this.root!=null){
this.root.postOrder();
}else{
System.out.println("二叉树为空,无法遍历");
}
}
//前序遍历
public HeroNode preOrderSearch(int no){
if (root!=null){
return root.preOrderSearch(no);
}else {
return null;
}
}
//中序遍历
public HeroNode infixOrderSearch(int no){
if (root!=null){
return root.infixOrderSearch(no);
}else {
return null;
}
}
//后序遍历
public HeroNode postOrderSearch(int no){
if (root!=null){
return root.postOrderSearch(no);
}else {
return null;
}
}
}
//先创建HeroNode节点
class HeroNode{
private int no;
private HeroNode left;
private HeroNode right;
public HeroNode(int no) {
this.no = no;
}
public int getNo() {
return no;
}
public void setNo(int no) {
this.no = no;
}
public HeroNode getLeft() {
return left;
}
public void setLeft(HeroNode left) {
this.left = left;
}
public HeroNode getRight() {
return right;
}
public void setRight(HeroNode right) {
this.right = right;
}
@Override
public String toString() {
return "HeroNode{" +
"no=" + no +
'}';
}
//递归删除节点
public void delNode(int no){
//如果当前结点的左子结点不为空,并且左子结点就是要删除结点,就将this.left=null;并且就返回(结束递归删除)
if (this.left!=null&&this.left.no==no){
this.left=null;
return;
}
//如果当前结点的右子结点不为空,并且右子结点就是要删除结点,就将this.right=null;并且就返回(结束递归删除)
if (this.right!=null&&this.right.no==no){
this.right=null;
return;
}
//如果第2和第3步没有删除结点,那么我们就需要向左子树进行递归删除
if (this.left!=null){
this.left.delNode(no);
}
//如果第4步也没有删除结点,则应当向右子树进行递归删除。
if (this.right!=null){
this.right.delNode(no);
}
}
//编写前序遍历的方法
public void preOrder() {
System.out.println(this);//先输出父节点
//递归向左子树前序遍历
if (this.left != null) {
this.left.preOrder();
}
//递归向右子树前序遍历
if (this.right != null) {
this.right.preOrder();
}
}
//编写中序遍历的方法
public void infixOrder(){
//递归向左子树前序遍历
if (this.left!=null){
this.left.infixOrder();
}
//输出父节点
System.out.println(this);
//递归向右子树前序遍历
if (this.right!=null){
this.right.infixOrder();
}
}
//编写后序遍历的方法
public void postOrder(){
if (this.left!=null){
this.left.postOrder();
}
if (this.right!=null){
this.right.postOrder();
}
System.out.println(this);
}
//前序遍历查找
/**
*
* @param no 查找no
* @return 如果找到就返回该Node,如果没有找到就返回null
*/
public HeroNode preOrderSearch(int no){
//比较当前节点是不是
if (this.no==no){
return this;
}
//判断当前节点的左节点是否为空,如果不为空,则递归前序查找
//如果左递归前序查找,找到节点,则返回
HeroNode resNode=null;
if (this.left!=null){
resNode=this.left.preOrderSearch(no);
}
if (resNode!=null){//说明我们左子树找到
return resNode;
}
//当前的节点的右子节点是否为空,如果不空,则继续向右递归前序查找
if (this.right!=null){
resNode=this.right.preOrderSearch(no);
}
return resNode;
}
//中序遍历查找
public HeroNode infixOrderSearch(int no){
//判断当前节点的左节点是否为空,如果不为空,则递归中序查找
HeroNode resNode=null;
if (this.left!=null){
resNode=this.left.infixOrderSearch(no);
}
if (resNode!=null){//说明我们左子树找到
return resNode;
}
//如果找到,则返回,如果没有找到,就和当前节点比较,如果是则返回当前节点
if (this.no==no){
return this;
}
//否则继续进行右递归的中序查找
if (this.right!=null){
resNode=this.right.infixOrderSearch(no);
}
return resNode;
}
//后续遍历查找
public HeroNode postOrderSearch(int no){
//判断当前节点的左子节点是否为空,如果不为空,则递归后续查找
HeroNode resNode=null;
if (this.left!=null){
resNode=this.left.postOrderSearch(no);
}
if (resNode!=null){//说明我们左子树找到
return resNode;
}
//如果左子树没有找到,则向右子树递归进行后续遍历查找
if (this.right!=null){
resNode=this.right.infixOrderSearch(no);
}
if (resNode!=null){//说明我们左子树找到
return resNode;
}
//如果左右子树都没有找到,就比较当前节点是不是
if (this.no==no){
return this;
}
return resNode;
}
}