今日的学习

lqp在为出题而烦恼,他完全没有头绪,好烦啊… 他首先想到了整数拆分。整数拆分是个很有趣的问题。给你一个正整数N,对于N的一个整数拆分就是满足任意m>0,a1 ,a2 ,a3…am>0,且a1+a2+a3+…+am=N的一个有序集合。通过长时间的研究我们发现了计算对于N的整数拆分的总数有一个很简单的递推式,但是因为这个递推式实在太简单了,如果出这样的题目,大家会对比赛毫无兴趣的。然后lqp又想到了斐波那契数。定义F0=0,F1=1,Fn=Fn-1+Fn-2 (n>1),Fn就是斐波那契数的第n项。但是求出第n项斐波那契数似乎也不怎么困难… lqp为了增加选手们比赛的欲望,于是绞尽脑汁,想出了一个有趣的整数拆分,我们暂且叫它:整数的lqp拆分。和一般的整数拆分一样,整数的lqp拆分是满足任意m>0,a1 ,a2 ,a3…am>0,且a1+a2+a3+…+am=N的一个有序集合。但是整数的lqp拆分要求的不是拆分总数,相对更加困难一些。对于每个拆分,lqp定义这个拆分的权值Fa1Fa2…Fam,他想知道对于所有的拆分,他们的权值之和是多少?简单来说,就是求 由于这个数会十分大,lqp稍稍简化了一下题目,只要输出对于N的整数lqp拆分的权值和mod 109(10的9次方)+7输出即可。

Input

输入的第一行包含一个整数N。

Output

输出一个整数,为对于N的整数lqp拆分的权值和mod 109(10的9次方)+7。

Sample Input

3

Sample Output

5
【样例说明】
F0=0,F1=1,F2=1,F3=2。
对于N=3,有这样几种lqp拆分:
3=1+1+1, 权值是1*1*1=1。
3=1+2,权值是1*2=2。
3=2+1,权值是2*1=2。
所以答案是1*1*1+1*2+2*1=5。

HINT

20%数据满足:1≤N≤25 50%数据满足:1≤N≤1000 100%数据满足:1≤N≤1000000

思路:嗯,开始的想法就是整数拆分,在进行计算,但是运行错误,网上找的看的不是很懂

链接:https://www.cnblogs.com/Y-E-T-I/p/7236824.html

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring> 
#include <math.h>
using namespace std;
int n;
long long M=1e9+7,g[1000010];
int main(){
    cin>>n;
    g[1]=1;
    for(int i=2;i<=n;i++)
    g[i]=(2*g[i-1]+g[i-2])%M;
    cout<<g[n];
    return 0;
}
 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值