DeepSeek是怎么做到降低成本的?

DeepSeek-V3 训练成本的最大因素:

MoE 架构:通过稀疏激活机制大幅减少了计算量。
FP8 训练:通过低精度计算减少了 GPU 内存使用和计算开销。

训练成本的主要构成

在训练像 DeepSeek - V3 这样的大型模型时,训练成本主要来源于两方面:

一是计算资源的使用,即需要大量的计算操作来处理数据和更新模型参数;

二是内存资源的使用,模型需要在内存中存储大量的数据和参数。

因此,减少计算量和内存使用是降低训练成本的关键。

MoE 架构:通过稀疏激活机制大幅减少计算量

什么是 MoE 架构

MoE 即 Mixture of Experts(专家混合)架构。想象有一个大型的问题解决团队,这个团队里有很多不同领域的专家(比如数学专家、语言专家、历史专家等)。当遇到一个具体问题时,不需要让所有专家都参与进来,只需要挑选最擅长解决这个问题的几个专家来处理。

如何减少计算量

在传统的神经网络中,每一层的所有神经元都会参与到计算中。但在 MoE 架构里,通过稀疏激活机制,模型会根据输入数据动态地选择一部分“专家”(也就是部分神经元或子网络)来进行计算。例如,在处理图像识别任务时,如果输入的是一张动物图片,那么模型可能只会激活与动物特征识别相关的“专家”进行计算,而其他不相关的“专家”则处于休眠状态。这样一来,就避免了不必要的计算,大幅减少了整体的计算量,从而降低了训练成本。

FP8 训练:通过低精度计算减少 GPU 内存使用和计算开销

什么是 FP8 训练

在计算机中,数据通常以不同的精度格式进行存储和处理,比如常见的 FP32(32 位浮点数)和 FP16(16 位浮点数)。FP8 则是一种 8 位浮点数格式,它使用更少的比特位来表示一个数值。

如何减少内存使用和计算开销
  • 减少 GPU 内存使用:可以把内存想象成一个大仓库,每个数据就像是仓库里的货物。FP32 格式的数据就像是体积较大的货物,占用的仓库空间多;而 FP8 格式的数据则像是体积较小的货物,占用的仓库空间少。因此,使用 FP8 训练时,模型可以在同样大小的 GPU 内存中存储更多的数据和参数,或者在存储相同数据量的情况下,只需要更小的内存空间,从而减少了对 GPU 内存的需求。
  • 减少计算开销:计算机在进行计算时,处理位数较少的数据比处理位数较多的数据更加快速和高效。就好比做加法运算时,计算 8 位数字相加比计算 32 位数字相加要简单得多。所以,使用 FP8 进行训练可以减少计算所需的时间和资源,降低计算开销,进而降低训练成本。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值