最近cuda出问题了,available报false。所以就想着重新装一遍torch和cuda。
但是因为在重新安装的时候,torch对应的torchtext版本号在安装的时候无法对应。所以就想着解决这个问题。首先进行cuda toolkit的安装,各个地方都有很多教程,具体的过程和错误处理方法也就不说了,这里主要讲解text的问题。
cuda-toolkit链接:
https://developer.nvidia.com/cuda-toolkit
主要问题发生在安装好torch之后,发现之前的text版本号对应不上torch。
但是要按着官方文档安装对应版本号:例如 pip install torchtext==0.17.0的时候,会重新把我已经安装好的torch-gpu版本卸载重装另一个版本的。多次尝试均无果,所以决定用wheel安装一个固定版本的torchtext以解决该问题。
conda activate yourenv
#先进入你的conda环境,用本地环境的可以忽略这一步
pip install wheel
#之后安装一个wheel
然后打开网页:https://pypi.org/
然后搜索 torchtext,找到对应的结果:
点进入之后,根据官方给的列表,找到你对应的text版本
我这边是2.2.0+0.17.0 cuda安装如下
# CUDA 12.1
pip install torch==2.2.0 torchvision==0.17.0 torchaudio==2.2.0 --index-url https://download.pytorch.org/whl/cu121
之后去左边的 released history中,找到自己需要的版本
然后进入对应版本的:download files
注意对应你的py版本,不要下载错误的版本即可。
之后通过启动好的cmd进入下载完成的文件夹的路径之中
最后通过cmd执行 pip install 文件名.whl ,对whl文件进行安装。
完成对应的安装后,通过代码检测整个cuda是否可用,发现此时的cuda已经可用
import torch
if torch.cuda.is_available():
print("CUDA可用!")
else:
print("CUDA不可用。")