- 博客(56)
- 收藏
- 关注
原创 《Python基础》之类的定义、封装、继承
Python 是一种广泛使用的高级编程语言,以其简洁、易读的语法和强大的功能而闻名。在面向对象编程(OOP)中,Python 提供了定义类、封装属性和方法、以及继承等核心概念。本文将深入探讨这些概念,帮助你更好地理解和应用 Python 的面向对象编程。在 Python 中,类是对象的蓝图或模板。通过定义类,我们可以创建具有相同属性和方法的对象。类的定义使用class关键字,后跟类名和冒号。类中的方法(函数)和属性(变量)定义在类的内部。class Dog:print(f"{self.name} 汪汪叫。
2024-12-01 20:04:43 318
原创 《Python基础》之数据加密模块hashlib的用法
hashlib是 Python 标准库中的一个模块,用于提供多种安全哈希和消息摘要算法。它支持多种哈希算法,如 MD5、SHA-1、SHA-256 等。哈希函数通常用于数据完整性验证、密码存储、数字签名等场景。hashlib模块提供了多种哈希算法,可以用于数据完整性验证、密码存储等场景。通过创建哈希对象、更新数据和获取哈希值,你可以轻松地在 Python 中使用这些哈希算法。
2024-11-29 20:36:50 693
原创 《Python基础》之Python中可以转换成json数据类型的数据
JSON(JavaScript Object Notation)是一种轻量级的数据交换格式,易于人阅读和编写,同时也易于机器解析和生成。它基于 JavaScript 的一个子集,但已经成为一种独立于语言的数据格式,广泛应用于各种编程语言和平台之间的数据交换。JSON 是一种简单、灵活且易于使用的数据格式,广泛应用于各种编程语言和平台之间的数据交换。了解 JSON 的基本结构和数据类型,以及如何在 Python 中处理 JSON 数据,对于开发和数据处理非常有帮助。
2024-11-29 20:01:10 814
原创 《Python基础》之函数、模块与库
在Python编程的世界中,函数、模块和库是构建复杂应用程序的基石。它们各自扮演着不同的角色,但又紧密相连,共同构成了Python代码的组织结构。理解这三者之间的关系和作用,对于提升编程效率和代码质量至关重要。函数,作为编程的基本单元,是实现特定任务的可重用代码块。它们接受输入参数,执行一系列操作,并返回输出结果。函数的简洁性和可重用性使得代码更加模块化和易于维护。模块,则是将相关函数、类和变量组织在一起的容器。模块通过文件的形式存在,使得代码可以被分门别类地管理和复用。
2024-11-28 21:44:45 1078
原创 《Opencv》基础操作<1>
OpenCV(Open Source Computer Vision Library)是一个开源的计算机视觉和机器学习软件库。它由一系列C++函数和少量C函数构成,同时也提供了Python、Java、MATLAB等语言的接口。OpenCV的设计目标是提供一个简单易用的计算机视觉框架,以便开发者能够快速实现各种视觉处理任务。
2024-11-27 21:03:38 1166
原创 Python小项目之实现用户登录与注册功能
用户信息存储:将用户注册信息(邮箱和密码)存储在CSV文件中。发送邮件验证码:在用户注册时,通过邮件发送验证码。用户注册:用户输入邮箱并接收验证码,验证成功后设置密码并完成注册。用户登录:用户输入邮箱和密码进行登录验证。本文介绍了如何使用Python实现一个简单的用户登录与注册系统,并详细讲解了如何通过Python发送邮件验证码。通过这个项目,你可以学习到如何使用Python处理文件操作、发送邮件以及实现基本的用户验证功能。
2024-11-27 14:34:38 1075
原创 如何学好 Python:从入门到精通的全面指南
然而,学好 Python 并非一蹴而就,需要系统的学习计划、良好的学习习惯和不断的实践。如果你有明确的应用方向,如 web 开发、数据分析等,可以根据具体需求学习相应的库和框架,如 Django、Flask、Pandas、NumPy 等。如果你已经具备一定的编程基础,可以深入学习 Python 的高级特性,如面向对象编程、异常处理、装饰器、生成器等,并尝试进行项目实践。如人工智能、大数据、区块链等领域的技术,Python 在这些领域都有广泛的应用,学习这些技术可以拓宽你的职业发展空间。
2024-11-26 23:18:00 603
原创 《Python基础》之函数的用法
在 Python 中,函数是一段可重用的代码块,用于执行特定的任务。函数可以帮助你将代码模块化,提高代码的可读性和可维护性。函数的用途代码重用:通过函数,你可以将常用的代码块封装起来,避免重复编写相同的代码。模块化:函数可以将复杂的任务分解为更小的、可管理的模块。提高可读性:通过函数,你可以为代码块命名,使代码更易于理解和维护。# 使用python中的关键字 defdef 函数名(参数1,参数2...):函数体。
2024-11-26 21:19:26 1096
原创 《Python基础》之对文件的基础操作
在编程中,文件操作是一个非常重要的部分,无论你是处理数据、保存配置还是记录日志,都离不开文件操作。本文将详细介绍Python中文件操作的基本概念和常用方法,帮助你掌握这一技能。通过本文的学习,你已经掌握了Python文件操作的基本知识和常用方法。希望这些内容能帮助你在实际编程中更加得心应手。继续练习和探索,你会发现更多有趣的用法!
2024-11-25 21:53:37 845
原创 《Python基础》之算数、比较、赋值、逻辑、位运算符
Python 提供了多种运算符,用于执行各种操作,包括算术运算、比较运算、逻辑运算、位运算、赋值运算等。以下是 Python 中常用的运算符及其功能Python 提供了丰富的运算符,涵盖了从基本算术运算到复杂逻辑运算的各种需求。掌握这些运算符可以帮助你更高效地编写 Python 代码。
2024-11-25 20:45:49 349
原创 《Python基础》之列表推导式(列表生成式)
列表推导式(List Comprehension)是Python中一种简洁且强大的语法,用于创建列表。它允许你在一行代码中生成一个新的列表,通常基于现有的列表或其他可迭代对象。expression:对item进行操作的表达式。item:从iterable中取出的元素。iterable:可迭代对象(如列表、元组、字符串等)。:可选的条件,只有满足条件的item才会被包含在新列表中。简洁:列表推导式可以用一行代码完成复杂的列表生成任务。高效:通常比使用for循环和append方法更快。可读性。
2024-11-25 19:51:31 539
原创 《Python基础》之数据容器
Python 中有多种数据容器,常见的数据容器有:列表(list)、元组(tuple)、字典(dict)、集合(set),它们用于存储和组织数据,每种容器都有其特点和适用场景。以下是对 Python 中常见数据容器的详细介绍列表是一种有序的可变容器,可以存储不同类型的数据元素,使用方括号[]来创建,元素之间用逗号分隔。元组也是有序的容器,但它是不可变的,一旦创建,元素就不能被修改,使用圆括号()来创建(当元组中只有一个元素时,需要在元素后面添加逗号,如(1,)tup = (1,)字典是一种无序的键值对(
2024-11-24 20:02:26 1250
原创 《Python基础》之判断结构
Python 的判断结构在程序流程控制中起着至关重要的作用,通过灵活运用这些结构,可以根据不同的业务需求和逻辑条件,让程序做出正确的执行分支选择,实现各种复杂的功能。
2024-11-23 10:24:31 457
原创 《Python基础》之字符串格式化输出
目录方式一1、带索引 {0}2、不带索引 { }3、{自定义变量} 方式二方式三控制浮点数精度 使用.format( )进行格式化输出结果为: format中的数据需要按照顺序填写输出结果为: 输出结果为: %占位符输出,这种方式传参,需要考虑数据类型的问题输出结果为: f-{ }格式化输出输出结果为: 结果:
2024-11-22 21:12:45 500
原创 《Python基础》之pip换国内镜像源
win + R打开窗口输入cmd,点击确定进入命令提示符。可能是隐藏文件,需要将隐藏关闭;文件夹,如果没有创建一个;使用记事本的方式打开。
2024-11-22 16:35:48 424
原创 Python简介以及解释器安装(保姆级教学)
Python 是一门解释型、面向对象以及动态数据类型的高级程序设计语言,语法简洁,非常适合初学者解释型: Python 代码在运行时没有了编译这个环节,类似于 PHP 语言面向对象 : Python 支持面向对象的风格或代码封装在对象的编程技术动态数据类型: Python 中没有对变量类型进行限制,代码非常灵活适合初学者: Python 语法简洁明了,从设计上降低代码复杂程度,支持领域非常广泛,如文字处理、 WEB 应用开发、游戏开发、数据分析、人工智能。
2024-11-21 20:14:12 999
原创 Ollama的安装以及大模型下载教程
Ollama是一个开源的大型语言模型服务工具,它帮助用户快速在本地运行大模型。通过简单的安装指令,用户可以执行一条命令就在本地运行开源大型语言模型, Ollama极大地简化了在Docker容器内部署和管理LLM的过程,使得用户能够快速地在本地运行大型语言模型。
2024-11-12 23:39:17 923
原创 Bert框架详解(下)
outputs(shifted right):指在解码器处理过程中,将之前的输出序列向右移动一位,并在最左侧添加一个新的起始符(如“<sos>”或目标序列开始的特殊token)作为新的输入。作用:通过“shifted right”操作,解码器能够在生成每个词时,都基于之前已经生成的词序列进行推断。在解码器的处理过程中: 在第一个步,解码器接收一个起始符(如“<sos>”)作为输入,并预测输出序列的第一个词“I”。注:一般选择字进行mask,词的可能性太多,例如今天,明天,后天,上午,下午,没有,再次等等。
2024-11-06 21:39:11 800
原创 Bert框架详解(上)
语义编码:例如当我们翻译法语中的“abandon”时,我们大脑是先将abandon所表达的概念意识提取出来,这也就是一个编码的过程。然后提取出来的这个意识概念也就是我们的Feature Vector. 接下来我们的大脑就会基于这个意识概念,去我们大脑中的英语语言库中把与这个意识概念匹配的英文单词提取出来, 这也就是解码的过程。人在处理信息的时候,会将注意力放在需要关注的信息上,对于其他无关的外部信息进行过滤,这种处理方式被称为注意力机制。前面的模型,并没有考虑词的顺序,只是单纯考虑一段话有哪些词。
2024-11-06 20:51:18 1170
原创 PyQt5的安装与简介
Qt 最初是由挪威的 Trolltech 公司开发的一个跨平台的 C++ 图形用户界面(GUI)应用程序开发框架,具有丰富的功能和良好的跨平台特性,广泛应用于各种桌面应用、嵌入式系统等领域。而 PyQt 则是将 Qt 库引入到 Python 语言中的项目,使得 Python 开发者能够利用 Qt 的强大功能来开发 GUI 程序。PyQt5 是 PyQt 的最新主要版本,对应于 Qt5 版本,它在继承了 Qt 优秀特性的基础上,充分发挥了 Python 简洁、高效的编程风格优势。
2024-11-04 21:23:55 570
原创 使用Github下载YOLO v5项目教程
版本的选择要根据自己python的版本以及安装的库的版本,在requirements.txt文件中查看版本信息。打开文件可以看到版本信息。下载之后解压即可使用。
2024-11-02 14:37:10 526
原创 LBPH算法实现人脸匹配
首先,它对光照变化有一定的鲁棒性,因为它关注的是局部像素之间的相对关系,而不是绝对的像素值。另外,它的识别精度相对一些基于深度学习的先进算法可能会稍低一些,在面对大量相似人脸的场景中,可能会出现混淆的情况。在一些小型的安防监控系统中,如家庭安防摄像头,它可以快速地对进入监控区域的人员进行初步的人脸检测和识别,判断是否为熟悉的人员。总之,LBPH 人脸检测算法是一种简单而有效的人脸检测方法,通过深入了解它的原理、实践应用以及优势和局限性,我们能够更好地在合适的场景中运用它,并为未来的技术改进提供思路。
2024-11-01 22:50:55 730
原创 Yolo系列 Yolo v4简介
YOLOv4(You Only Look Once, Version 4)是一种先进的实时目标检测算法,由Alexey Bochkovskiy、Chien-Yao Wang和Hong-Yuan Mark Liao于2020年提出。作为YOLO系列算法的第四个版本,YOLOv4在继承了前代版本高效性的基础上,通过一系列优化和改进,实现了更高的检测精度和速度。与YOLO前几个系列相比YOLOv4更换了作者,但整体思考没有变并且吸收了当时主流的框架优点。
2024-11-01 22:39:46 1616
原创 利用 yolov3.cfg 配置文件搭建网络模型
在深度学习领域,目标检测一直是一个热门且极具挑战性的任务。而 YOLO(You Only Look Once)系列算法以其高效快速的检测性能备受关注,其中 YOLOv3 更是在诸多应用场景中展现出了强大的实力。今天,我们就来深入了解一下如何通过 yolov3.cfg 配置文件搭建其对应的网络模型。yolov3.cfg 配置文件就像是搭建网络模型的蓝图,它详细地规定了网络的各个组成部分,包括每一层的类型、参数等信息。
2024-10-28 23:41:59 842
原创 Yolo系列 v3简介
YOLO(You Only Look Once)系列算法在目标检测领域已经成为了炙手可热的技术之一。作为该系列的第三代版本,YOLOv3在实时性和准确性上取得了显著的提升。本文将详细介绍YOLOv3的核心架构、创新之处以及在实际应用中的表现。YOLOv3是由Joseph Redmon等人在2018年推出的一款目标检测算法。与前代版本相比,YOLOv3在保持实时性的基础上,进一步提高了检测准确性。它的核心思想是将目标检测问题转化为一个回归问题,通过一个统一的神经网络同时预测物体的类别和位置。
2024-10-24 21:51:28 1067
原创 Yolo 系列v2简介
YOLO v2(You Only Look Once version 2)是一种用于目标检测的深度学习模型,由 Joseph Redmon 等人于 2016 年提出。yolo v2在v1的基础上进行了一些改进使它在保持高速检测的同时,显著提升了检测的精度和泛化能力,成为实时目标检测领域的重要算法之一。
2024-10-23 17:27:50 805
原创 Yolo目标检测:Yolo v1简介
YOLO(You Only Look Once)是一种基于深度学习的目标检测算法,由Joseph Redmon等人于2016年提出。它的核心思想是将目标检测问题转化为一个回归问题,通过一个神经网络直接预测目标的类别和位置。YOLO算法将输入图像分成SxS个网格,每个网格负责预测该网格内是否存在目标以及目标的类别和位置信息。此外,YOLO算法还采用了多尺度特征融合的技术,使得算法能够在不同尺度下对目标进行检测。
2024-10-21 22:22:50 848
原创 Web框架之Flask框架的简介与实践
轻量级:Flask是一个轻量级的框架,代码量少,灵活性高,适合快速开发小型应用程序。简单易学:Flask的设计理念简洁明了,入门相对容易,对于初学者来说非常友好。可扩展性强:Flask提供了丰富的扩展库,开发者可以根据需求选择合适的扩展来扩展功能。社区支持良好:Flask有一个庞大的社区,提供了丰富的资源和支持。= "RGB":# Resize the input image and preprocess it.(按照所使用的模型将输入图片的尺寸修改,并转为tensor)
2024-10-20 20:40:43 1282
原创 基于微博评论的自然语言处理情感分析
本文将介绍一个基于自然语言处理技术对微博评论文本(simplifyweibo_4_moods.csv)进行情感分析的项目。本项目旨在构建一个能够对微博评论进行情感分类的模型,将评论分为 “喜悦”、“愤怒”、“厌恶” 和 “低落” 四种情感类别。项目涵盖了从数据预处理、模型构建到训练和评估的完整流程。项目任务:对微博评论信息的情感分析,建立模型,自动识别评论信息的情绪状态。通过本项目,我们展示了一个完整的自然语言处理情感分析流程,从数据预处理到模型构建和训练评估。
2024-10-18 21:11:55 1524
原创 dlib库实现人脸检测
本文将向您介绍如何使用dlib库在图片以及视频中实现人脸识别检测。通过简单的Python代码,我们将展示如何定位图片中的人脸并绘制边框。通过以上简单的步骤,我们成功实现了使用dlib库检测图片中的人脸。dlib库的强大功能使得人脸检测变得简单而高效,适用于各种实际应用场景。希望本文能够帮助您更好地理解人脸检测技术,并激发您探索更多计算机视觉领域的兴趣。在实际应用中,您可以根据需要进一步扩展功能,例如添加人脸识别或情感分析等。
2024-10-16 20:54:09 580
原创 OpenCV物体跟踪:使用CSRT算法实现实时跟踪
在计算机视觉和视频处理领域,物体跟踪是一项核心技术,它在监控、人机交互、运动分析等方面有着广泛的应用。本文将介绍如何使用OpenCV库中的CSRT(Consensus Segment Tracking with Motion Model and Global Optimization)算法实现实时的物体跟踪。物体跟踪的目标是给定一个初始化的区域(ROI),在视频序列中连续地定位该物体。随着视频帧的不断输入,跟踪算法需要准确快速地更新物体的位置和大小。
2024-10-15 21:49:44 1019
原创 Opencv:FisherFace算法实现人脸检测
在人工智能和计算机视觉领域,人脸识别是一项非常有趣且实用的技术。本文将向您介绍如何使用OpenCV库以及FisherFace算法实现人脸识别。我们将一步步分析代码,并展示如何将其应用到一个简单的项目中。人脸识别技术通过分析人脸图像的特征,从而识别出图像中的人。OpenCV是一个强大的计算机视觉库,提供了多种人脸识别算法。FisherFace算法是基于线性判别分析(LDA)的一种人脸识别方法,它能够有效地在特征空间中对人脸进行分类。本文展示了如何使用OpenCV库和FisherFace算法实现人脸识别。
2024-10-15 21:21:17 618
原创 Opencv:EignFace算法实现人脸识别
EigenFace算法是人脸识别领域中的一种经典算法,它基于主成分分析(PCA)的原理,通过对人脸图像进行特征提取和降维,从而实现对人脸的有效识别。EigenFace算法的核心思想是将人脸图像从原始的像素空间转换到一个由特征向量构成的新空间,在这个新空间中,不同的人脸图像可以根据其特征向量被有效地区分开来。这种转换使得同一类别的图像在特征空间中更加紧凑,不同类别的图像则相隔较远。
2024-10-15 21:11:32 604
原创 探索OpenCV的人脸检测:用Haar特征分类器识别图片中的人脸
在计算机视觉和图像处理领域,人脸识别是一项重要的技术。它不仅应用于安全监控、人机交互,还在智能家居、社交媒体等多个领域都有广泛的应用。本文将介绍如何使用OpenCV库和Haar特征分类器在图片中检测人脸。人脸检测是指从图像中找出人脸的位置。它通常是更复杂的人脸识别、表情识别和姿态估计等任务的第一步。一个有效的人脸检测算法应该能够准确地识别出不同方向、光线和遮挡情况下的人脸。
2024-10-14 22:40:05 678
原创 通过OpenCV实现 Lucas-Kanade 算法
在计算机视觉领域,光流估计是一种追踪物体运动的技术。它通过比较连续帧之间的像素强度变化来估计图像中每个像素的移动。本文将通过一个实际例子,使用Python和OpenCV库来展示光流估计的概念,特别是Lucas-Kanade光流算法的实现。光流估计的核心思想是假设一个像素在连续帧之间的移动不会改变其亮度。这个假设允许我们通过比较相邻帧中像素的亮度变化来计算其运动速度。在视频处理中,这种技术可以用于追踪物体的运动、分析运动模式等。
2024-10-14 22:28:52 791
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人