邻接表
1.定义
邻接表相当于图的压缩存储,当一个图是稀疏图(即边数较少)时,用矩阵存储会导致大量空间的浪费,而用邻接表则可以很好地解决这个问题。
邻接表是顺序和链式存储相结合的存储方式,用一个数组来存储图的每个结点,将结点作为表头。其他邻接点作为边表,与表头构成单链表。
2.基本操作
1.定义表头结点
//表头结点
typedef struct AdjacencyList
{
int numNodes;
AdjacencyNode* headers;
}AdjacencyList, *AdjacencyListPtr;
2.定义边表结点
//边表结点
typedef struct AdjacencyNode
{
int column;
struct AdjacencyNode* next;
} AdjacencyNode, *AdjacentNodePtr;
3.创建邻接表
//创建邻接表
AdjacencyListPtr graphToAdjacentList(GraphPtr paraPtr)
{
int i, j, tempNum;
AdjacentNodePtr p, q;
tempNum = paraPtr->numNodes;
AdjacencyListPtr resultPtr = (AdjacencyListPtr)malloc(sizeof(struct AdjacencyList));
resultPtr->numNodes = tempNum;
resultPtr->headers = (AdjacencyNode*)malloc(tempNum * sizeof(struct AdjacencyNode));
for(i = 0; i < tempNum; i ++)
{
p = &(resultPtr->headers[i]);
p->column = -1;
p->next = NULL;
for(j = 0; j < tempNum; j ++)
{
if(paraPtr->connections[i][j] > 0)
{
q = (AdjacentNodePtr)malloc(sizeof(struct AdjacencyNode));
q->column = j;
q->next = NULL;
p->next = q;
p = q;
}
}
}
return resultPtr;
}
4.打印邻接表
//打印邻接表
void printAdjacentList(AdjacencyListPtr paraPtr)
{
int i;
AdjacentNodePtr p;
int tempNum = paraPtr->numNodes;
printf("图的邻接表存储:\r\n");
for (i = 0; i < tempNum; i ++)
{
p = paraPtr->headers[i].next;
while (p != NULL)
{
printf("%d ", p->column);
p = p->next;
}
printf("\r\n");
}
}
3.广度优先遍历
//广度优先遍历
void widthFirstTranverse(AdjacencyListPtr paraListPtr, int paraStart)
{
printf("广度优先遍历:\r\n");
int i, j, tempNode;
AdjacentNodePtr p;
i = 0;
visitedPtr = (int*) malloc(paraListPtr->numNodes * sizeof(int));
for(i = 0; i < paraListPtr->numNodes; i ++)
{
visitedPtr[i] = 0;
}
QueuePtr tempQueuePtr = initQueue();
printf("%d ", paraStart);
visitedPtr[paraStart] = 1;
enqueue(tempQueuePtr, paraStart);
while (!isQueueEmpty(tempQueuePtr))
{
tempNode = dequeue(tempQueuePtr);
for(p = &(paraListPtr->headers[tempNode]); p != NULL; p = p->next)
{
j = p->column;
if (visitedPtr[j])
continue;
printf("%d ", j);
visitedPtr[j] = 1;
enqueue(tempQueuePtr, j);
}
}
printf("\r\n");
}
总代码
#include <stdbool.h>
#include <stdio.h>
#include <malloc.h>
#define QUEUE_SIZE 10
int* visitedPtr;
//定义图
typedef struct Graph
{
int** connections;
int numNodes;
} *GraphPtr;
//初始化图
GraphPtr initGraph(int paraSize, int** paraData)
{
int i, j;
GraphPtr resultPtr = (GraphPtr)malloc(sizeof(struct Graph));
resultPtr->numNodes = paraSize;
resultPtr->connections = (int**)malloc(paraSize * sizeof(int*));
for(i = 0; i < paraSize; i ++)
{
resultPtr -> connections[i] = (int*)malloc(paraSize * sizeof(int));
for(j = 0; j < paraSize; j ++)
{
resultPtr -> connections[i][j] = paraData[i][j];
}
}
return resultPtr;
}
//队列
typedef struct GraphNodeQueue
{
int* nodes;
int front;
int rear;
}GraphNodeQueue, *QueuePtr;
//初始化队列
QueuePtr initQueue()
{
QueuePtr resultQueuePtr = (QueuePtr)malloc(sizeof(struct GraphNodeQueue));
resultQueuePtr->nodes = (int*)malloc(QUEUE_SIZE * sizeof(int));
resultQueuePtr->front = 0;
resultQueuePtr->rear = 1;
return resultQueuePtr;
}
//判断队空
bool isQueueEmpty(QueuePtr paraQueuePtr){
if ((paraQueuePtr->front + 1) % QUEUE_SIZE == paraQueuePtr->rear) {
return true;
}//Of if
return false;
}//Of isQueueEmpty
//入队
void enqueue(QueuePtr paraQueuePtr, int paraNode){
if((paraQueuePtr->rear + 1) % QUEUE_SIZE == paraQueuePtr->front % QUEUE_SIZE)
{
printf("队满,不能入队.\r\n", paraNode);
return;
}
paraQueuePtr->nodes[paraQueuePtr->rear] = paraNode;
paraQueuePtr->rear = (paraQueuePtr->rear + 1) % QUEUE_SIZE;
}
//出队
int dequeue(QueuePtr paraQueuePtr)
{
if(isQueueEmpty(paraQueuePtr))
{
printf("队空,不能出队.\r\n");
return -1;
}
paraQueuePtr->front = (paraQueuePtr->front + 1) % QUEUE_SIZE;
return paraQueuePtr->nodes[paraQueuePtr->front];
}
//边表结点
typedef struct AdjacencyNode
{
int column;
struct AdjacencyNode* next;
} AdjacencyNode, *AdjacentNodePtr;
//表头结点
typedef struct AdjacencyList
{
int numNodes;
AdjacencyNode* headers;
}AdjacencyList, *AdjacencyListPtr;
//创建邻接表
AdjacencyListPtr graphToAdjacentList(GraphPtr paraPtr)
{
int i, j, tempNum;
AdjacentNodePtr p, q;
tempNum = paraPtr->numNodes;
AdjacencyListPtr resultPtr = (AdjacencyListPtr)malloc(sizeof(struct AdjacencyList));
resultPtr->numNodes = tempNum;
resultPtr->headers = (AdjacencyNode*)malloc(tempNum * sizeof(struct AdjacencyNode));
for(i = 0; i < tempNum; i ++)
{
p = &(resultPtr->headers[i]);
p->column = -1;
p->next = NULL;
for(j = 0; j < tempNum; j ++)
{
if(paraPtr->connections[i][j] > 0)
{
q = (AdjacentNodePtr)malloc(sizeof(struct AdjacencyNode));
q->column = j;
q->next = NULL;
p->next = q;
p = q;
}
}
}
return resultPtr;
}
//打印邻接表
void printAdjacentList(AdjacencyListPtr paraPtr)
{
int i;
AdjacentNodePtr p;
int tempNum = paraPtr->numNodes;
printf("图的邻接表存储:\r\n");
for (i = 0; i < tempNum; i ++)
{
p = paraPtr->headers[i].next;
while (p != NULL)
{
printf("%d ", p->column);
p = p->next;
}
printf("\r\n");
}
}
//广度优先遍历
void widthFirstTranverse(AdjacencyListPtr paraListPtr, int paraStart)
{
printf("广度优先遍历:\r\n");
int i, j, tempNode;
AdjacentNodePtr p;
i = 0;
visitedPtr = (int*) malloc(paraListPtr->numNodes * sizeof(int));
for(i = 0; i < paraListPtr->numNodes; i ++)
{
visitedPtr[i] = 0;
}
QueuePtr tempQueuePtr = initQueue();
printf("%d ", paraStart);
visitedPtr[paraStart] = 1;
enqueue(tempQueuePtr, paraStart);
while (!isQueueEmpty(tempQueuePtr))
{
tempNode = dequeue(tempQueuePtr);
for(p = &(paraListPtr->headers[tempNode]); p != NULL; p = p->next)
{
j = p->column;
if (visitedPtr[j])
continue;
printf("%d ", j);
visitedPtr[j] = 1;
enqueue(tempQueuePtr, j);
}
}
printf("\r\n");
}
void testGraphTranverse() {
int i, j;
int myGraph[5][5] = {
{0, 1, 0, 1, 0},
{1, 0, 1, 0, 1},
{0, 1, 0, 1, 1},
{1, 0, 1, 0, 0},
{0, 1, 1, 0, 0}};
int** tempPtr;
printf("图的矩阵形式:\n");
for(i = 0;i < 5;i ++)
{
for(j = 0;j < 5;j ++)
{
printf("%d ",myGraph[i][j]);
}
printf("\n");
}
tempPtr = (int**)malloc(5 * sizeof(int*));
for(i = 0; i < 5; i ++)
{
tempPtr[i] = (int*)malloc(5 * sizeof(int));
}
for(i = 0; i < 5; i ++)
{
for(j = 0; j < 5; j ++)
{
tempPtr[i][j] = myGraph[i][j];
}
}
GraphPtr tempGraphPtr = initGraph(5, tempPtr);
AdjacencyListPtr tempListPtr = graphToAdjacentList(tempGraphPtr);
printAdjacentList(tempListPtr);
widthFirstTranverse(tempListPtr, 4);
}
int main()
{
testGraphTranverse();
return 1;
}
运行结果
图的矩阵形式:
0 1 0 1 0
1 0 1 0 1
0 1 0 1 1
1 0 1 0 0
0 1 1 0 0
图的邻接表存储:
1 3
0 2 4
1 3 4
0 2
1 2
广度优先遍历:
4 1 2 0 3