- 博客(22)
- 收藏
- 关注
原创 多头注意力机制(Multi-Head Self-Attention)
允许注意力机制组合使用Query、Key和Value的不同子空间表示可能有益的。先利用独立学习得到的h组不同的线性投影来变换Query、Key和Value;然后,将这h组变换后的Query、Key和Value并行送到注意力汇聚中;最后,将这h个注意力汇聚的输出拼接在一起,并且通过另一个可以学习的线性投影进行变换,来输出最终的结果。
2024-10-15 21:33:56 208
原创 6种典型攻击
梯度反演攻击的主要思想是利用模型训练过程中交换的梯度信息,通过优化技术重建出参与训练的原始数据。是一种针对人工智能(AI)系统的训练数据进行恶意篡改的行为,其目的是让训练出的AI模型在预测时产生错误的输出,从而影响模型的决策和性能。模型内存泄漏是指在模型训练过程中,由于不正确的内存管理,导致内存无法释放,进而影响训练效率和模型性能的问题。尽管已有一些防御方法被提出,但梯度反演攻击的研究仍然在不断进展,攻击者可能会开发出新的攻击技术来绕过现有的防御措施。
2024-10-15 13:23:35 694
原创 强化学习基础知识
动作价值函数 Q(s,a)Q(s,a) 定义为在状态 ss 下采取动作 aa 并遵循某个策略 ππ 所能获得的期望回报。数学上,它可以表示为:其中,RtRt 是在时间步骤 tt 采取动作后获得的即时奖励,StSt 和 AtAt 分别是在时间步骤 tt 的状态和动作。
2024-09-11 18:44:55 741
原创 机器学习中常用的几种距离
L1距离,也称为曼哈顿距离(Manhattan Distance)或城市街区距离(City Block Distance),是一种度量两个点在标准坐标系上的绝对轴距总和的距离度量方法。L2距离,也称为欧几里得距离(Euclidean Distance),是度量两点在欧几里得空间中直线距离的一种方法。其中,n 是维度的数量,pi 和 qi 分别是点 P 和 Q 在第 i 维上的坐标。其中,n 是维度的数量,pi 和 qi分别是点 P和 Q在第 i 维上的坐标。
2024-09-02 20:10:53 434
原创 TypeError: ‘(slice(None, None, None), slice(0, 3, None))‘ is an invalid key
报错原因:df在这里的类型是dataframe,dataframe格式的数据不能直接用数组的形式提取。 解决方式:用df.iloc[:,:],就可以解决以上问题。
2023-12-19 20:26:15 728 1
原创 如何解决过拟合和欠拟合
(3)正则化:获取更多数据,从数据源获得更多数据,或数据增强。(1)数据处理:1、清洗数据,2、降维,3、类别平衡。融合几个具有差异的弱模型,使其成为一个强模型;即提供的特征不能表示出那个需要的函数;即使得模型复杂一些;
2023-08-28 14:42:38 400
原创 梯度下降法和牛顿迭代法
在用到机器学习的算法中,本质是建立优化模型,通过最优化方法对目标函数或者损失函数进行优化,从而训练出最好的模型。一般最常见的最优化方法有梯度下降法、牛顿迭代法。梯度下降法的优化思想是用当前位置负梯度方向作为搜索方向,因为该方向为当前位置的最快下降方向,所以也被称为是”最速下降法“。最速下降法越接近目标值,步长越小,前进越慢。 梯度下降法缺点:1)靠近极小值时收敛速度减慢;2)直线搜索时可能会产生一些问题;3)可能会“之字形”地下降。 用一个二次函数去近似目标函数f(x),然后精确地求出这个二次函数的极小点。
2023-08-10 11:44:10 570 1
原创 什么是卷积,什么是卷积神经网络。
卷积:“卷”表示函数的翻转或图像的翻转;“积”表示积分/加权求和。卷积是将卷积核应用到某个张量的所有点上,通过将卷积核在输入的张量上滑动而生成滤波处理的张量。通俗一点讲卷积是对图像特征提取或者信息匹配。卷积神经网络:是通过模拟人脑视觉系统,采取卷积层和池化层依次交替的模型结构,卷积层使原始信号得到增强,提高信噪比,池化层利用图像局部相关性原理,对图像进行邻域间采样,在减少数据量的同时提取有用信息,同时参数减少和权值共享使得系统训练时间长的问题得到改善。
2023-08-10 10:12:59 1006 1
原创 报错原因:TypeError: ‘NoneType‘ object is not subscriptable
报错原因 :class是一个对象,将它实例化后,便可以直接调用对象里面的函数。解决方案:删除run后面的()
2023-07-12 10:53:11 131 1
原创 贝叶斯定理
P(B|A) 是条件概率的符号,表示事件 A 发生的条件下,事件 B 发生的概率,这可以看作一个条件概率,条件概率是“贝叶斯公式”的关键之处,这个计算结果可以看成“先验概率”。P(A) 这是概率中最基本的符号,表示 A 出现的概率。比如在投掷一枚骰子时,P(3) 指的是骰子出现数字“3”的概率,这个概率是 六分之一。P(A|B) 是条件概率的符号,表示事件 B 发生的条件下,事件 A 发生的概率,这个计算结果可以看成“后验概率”。
2023-07-07 11:45:03 163 1
原创 NAT原理(计算机网络)
NAT(Network Address Translation)是指网络地址转换。其可以实现在专用网的主机与在因特网的主机之间建立通信。
2023-07-06 14:09:18 69 1
原创 报错原因:AttributeError: ‘Series‘ object has no attribute ‘iter‘
由于’pandas‘库的’series‘对象不支持’iter‘属性,因此无法使用’iter_rows‘方法。:我们可以通过直接访问’pandas‘库的’DataFrame‘对象的行来实现相同的效果。
2023-07-05 10:41:31 2052
原创 报错类型 PermissionError: [Errno 13] Permission denied: ‘D:\XXX\XXX.xlsx‘
报错原因:该文件已经被打开,不能够进行操作。“打开”是这个excel正在被其他的文件占用打开。解决方法:把excel关闭就可以进行保存后面的操作了。
2023-07-05 09:20:09 379
原创 安装d2l报错:ERROR: Could not install packages due to an OSError: [WinError 5] 拒绝访问。: ‘D:\\应用程序\\python\\
出现以下报错:报错原因:pip安装模块的权限不够导致安装失败。解决方案:在原先安装的语句后加是“--user”,问题解决。
2023-06-09 16:30:17 731 1
原创 图---关键路径
说明:关键路径是解决完成一个工程所需的最少代价的问题。AOE网:是指在一个表示工程的带权有向图中,用顶点表示事件,用有向边表示活动,用边上的权值表示活动的持续时间。路径长度:路径上各个活动所持续的时间之和。关键路径:从源点到汇点具有最大长度的路径。关键活动:当所有活动的最早开始时间和最晚开始时间相等时,此时的活动称为关键活动。【下图是判断ak是否为关键活动步骤.】 总结:
2023-06-08 16:59:19 82 1
原创 报错提示:OSError: [Errno 22] Invalid argument: ‘D:\\KeDa\\试题\\第二题\x01\\段落.txt‘
x01\\\
2023-06-03 10:44:17 534
原创 信息论与编码
信道编码是以信息在信道上的正确传输为目标的编码,主要分为两个层次:1.如何正确接收载有信息的信号;2.如何避免少量差错信号对信息内容的影响。提示:这里对文章进行总结:例如:以上就是今天要讲的内容,本文仅仅简单介绍了pandas的使用,而pandas提供了大量能使我们快速便捷地处理数据的函数和方法。
2023-05-28 15:09:55 653
空空如也
python修改RGB数值。
2023-09-11
TA创建的收藏夹 TA关注的收藏夹
TA关注的人