Machine Learning-Ex3(吴恩达课后习题)Multi-class Classification and Neural Networks

目录

1. Multi-class Classification

1.1 Dataset

1.2 Visualizing the data

1.3 Vectorizing Logistic Regression

1.3.1 Vectorizing the cost function(no regularization)

1.3.2 Vectorizing the gradient(no regularization)

1.3.3 Vectorizing regularized logistic regression​

1.4 One-vs-all Classification

1.4.1 One-vs-all Prediction 

2. Neural Networks

2.1 Model representation

2.2 Feedforward Propagation and Prediction​


1. Multi-class Classification

1.1 Dataset

内容:5000个20*20像素的手写字体图像与它对应的数字,其中数字0的值用10表示。

main.py

# scipy.io模块提供了很多函数来处理Matlab的数组
from scipy.io import loadmat  # loadmat方法可以导入Matlab格式数据

data = loadmat('ex3data1.mat')
print(data)
print(data['X'].shape, data['y'].shape)  # (5000, 400) (5000, 1)

{'__header__': b'MATLAB 5.0 MAT-file, Platform: GLNXA64, Created on: Sun Oct 16 13:09:09 2011', '__version__': '1.0', '__globals__': [], 'X': array([[0., 0., 0., ..., 0., 0., 0.],
       [0., 0., 0., ..., 0., 0., 0.],
       [0., 0., 0., ..., 0., 0., 0.],
       ...,
       [0., 0., 0., ..., 0., 0., 0.],
       [0., 0., 0., ..., 0., 0., 0.],
       [0., 0., 0., ..., 0., 0., 0.]]), 'y': array([[10],
       [10],
       [10],
       ...,
       [ 9],
       [ 9],
       [ 9]], dtype=uint8)}
(5000, 400) (5000, 1)

1.2 Visualizing the data

内容:随机展示100个数据。

main.py

# scipy.io模块提供了很多函数来处理Matlab的数组
from scipy.io import loadmat  # loadmat方法可以导入Matlab格式数据
import numpy as np

data = loadmat('ex3data1.mat')
# np.random.choice(a,size=None,replace=True,p=None)
# 1.从a(必须是一维)中随机取数字,组成大小为size的数组;replace-True表示可以取相同数字;p-a中每个元素被取的概率,默认为每个元素概率相同
# np.arange(start,stop,step)用于生成数组-开始位置,停止位置,步长,即在给定间隔内返回均匀间隔的值
# print(np.arange(data['X'].shape[0]))  # [   0    1    2 ... 4997 4998 4999]
sample_index = np.random.choice(np.arange(data['X'].shape[0]), 100)  # 从0-4999中随机抽取100个数作为下标
sample_images = data['X'][sample_index, :]  # 抽取下标为sample_index的这些X的数据行
print(sample_images)

[[0. 0. 0. ... 0. 0. 0.]
 [0. 0. 0. ... 0. 0. 0.]
 [0. 0. 0. ... 0. 0. 0.]
 ...
 [0. 0. 0. ... 0. 0. 0.]
 [0. 0. 0. ... 0. 0. 0.]
 [0. 0. 0. ... 0. 0. 0.]]

plot_training_set.py

import numpy as np
import matplotlib.pyplot as plt
import matplotlib  # 使用matplotlib.cm色表

def plotTrainingSet(data):
    sample_index = np.random.choice(np.arange(data['X'].shape[0]), 100)  # 从0-4999中随机抽取100个数作为下标
    sample_images = data['X'][sample_index, :]  # 抽取下标为sample_index的这些X的数据行 (100*400)
    # subplots(nrows,ncols,sharex,sharey)-子图的行列数,sharex/sharey为True时所有子图共享x或y轴,为False时子图的x,y轴均为独立
    fig, axs = plt.subplots(nrows=10, ncols=10, sharex=True, sharey=True, figsize=(10, 10))
    # 1.使用axs[i][j]选中第i+1行j+1列的子图框
    # 2.matplotlib.pyplot.matshow(A,cmap),A-"矩阵"(一个矩阵元素对应一个图像像素),cmap-一种颜色映射方式
    # 3.matplotlib.cm为色表,binary为灰度图像标准色表,matshow为可绘制矩阵的函数
    # 4.xticks(ticks,labels),ticks-x轴刻度位置的列表,若传入空列表则不显示x轴,labels-放在指定刻度位置的标签文本
    for i in range(10):
        for j in range(10):
            axs[i][j].matshow(sample_images[i * 10 + j].reshape(20, 20).T, cmap=matplotlib.cm.binary)
    plt.xticks(np.array([]))
    plt.yticks(np.array([]))
    plt.show()

main.py 

# scipy.io模块提供了很多函数来处理Matlab的数组
from scipy.io import loadmat  # loadmat方法可以导入Matlab格式数据
from plot_training_set import *  # 绘制训练集数据

data = loadmat('ex3data1.mat')
plotTrainingSet(data)

1.3 Vectorizing Logistic Regression

内容:因为有10个数字类别,所以我们要做10个不同的逻辑回归分类器。将逻辑回归向量化会使训练效率更加高效。

1.3.1 Vectorizing the cost function(no regularization)

sigmoid.py

import numpy as np
def Sigmoid(z):
    return 1 / (1 + np.exp(-z))

cost_function.py(with regularization)

import numpy as np
from sigmoid import *

def costFunction(theta, X, y, learningRate):
    theta = np.matrix(theta)
    X = np.matrix(X)
    y = np.matrix(y)
    m = len(X)
    first = np.multiply(y, np.log(Sigmoid(X * theta.T)))
    second = np.multiply(1 - y, np.log(1 - Sigmoid(X * theta.T)))
    reg = (learningRate / (2 * m)) * np.sum(np.power(theta[:, 1:theta.shape[1]], 2))  # theta0项不用正则化
    return np.sum(first + second) * (-1) / m + reg

1.3.2 Vectorizing the gradient(no regularization)

gradient.py

import numpy as np
from sigmoid import *

def computeGradient(theta, X, y):
    X = np.matrix(X)
    y = np.matrix(y)
    theta = np.matrix(theta)
    m = len(X)
    grad = ((Sigmoid(X * theta.T) - y).T * X) / m
    return grad

1.3.3 Vectorizing regularized logistic regression

gradient.py

import numpy as np
from sigmoid import *

def computeGradient(theta, X, y, learningRate):
    X = np.matrix(X)
    y = np.matrix(y)
    theta = np.matrix(theta)
    m = len(X)
    grad = ((((Sigmoid(X * theta.T) - y).T * X)).T + learningRate * theta.T) / m
    grad[0][0] = (Sigmoid(X * theta.T) - y).T * X[:, 0] / m
    return grad

1.4 One-vs-all Classification

内容:构建分类器,由于逻辑回归只能在两个类别之间进行分类,所以我们需要多类分类的策略。对于每一个分类器我们只需要判断它的类别是'i'或者不是'i'即可。

one_vs_all.py

from scipy.optimize import minimize  # 提供最优化算法函数
import numpy as np
from cost_function import *  # 代价函数
from gradient import *  # 梯度

def one_vs_all(X, y, num_labels, learningRate):
    rows = X.shape[0]
    cols = X.shape[1]
    all_theta = np.zeros((num_labels, cols + 1))  # 对于num_labels(10分类)的全部theta定义
    X = np.insert(X, 0, values=np.ones(rows), axis=1)  # 放入X0项,为1 (axis=1:按列放置)
    # 进行逻辑分类(做10个分类器)
    for i in range(1, num_labels + 1):
        theta = np.zeros(cols + 1)
        y_i = np.array([1 if label == i else 0 for label in y]).reshape(rows, 1)
        y_i = np.reshape(y_i, (rows, 1))
        # 1.fun:目标函数costFuntion
        # 2.x0:初始的猜测
        # 3.args=():优化的附加参数
        # 4.计算梯度的方法
        # method:要使用的方法名称,这里使用的TNC(截断牛顿算法)
        fmin = minimize(fun=costFunction, x0=theta, args=(X, y_i, learningRate), method='TNC', jac=computeGradient)
        all_theta[i - 1:] = fmin.x  # fmin.x是theta的值
    return all_theta

main.py

# scipy.io模块提供了很多函数来处理Matlab的数组
from scipy.io import loadmat  # loadmat方法可以导入Matlab格式数据
import numpy as np
from one_vs_all import *

data = loadmat('ex3data1.mat')
X = data['X']
y = data['y']
theta = np.zeros(X.shape[1])
all_theta = one_vs_all(X, y, 10, 1)
print(all_theta)

[[-2.38358610e+00  0.00000000e+00  0.00000000e+00 ...  1.30435711e-03
  -7.45365860e-10  0.00000000e+00]
 [-3.18324551e+00  0.00000000e+00  0.00000000e+00 ...  4.45577193e-03
  -5.07998907e-04  0.00000000e+00]
 [-4.79716788e+00  0.00000000e+00  0.00000000e+00 ... -2.87443285e-05
  -2.47862001e-07  0.00000000e+00]
 ...
 [-7.98546406e+00  0.00000000e+00  0.00000000e+00 ... -8.95211947e-05
   7.22094621e-06  0.00000000e+00]
 [-4.57261766e+00  0.00000000e+00  0.00000000e+00 ... -1.33564925e-03
   9.98868166e-05  0.00000000e+00]
 [-5.40500039e+00  0.00000000e+00  0.00000000e+00 ... -1.16648642e-04
   7.88651180e-06  0.00000000e+00]]

1.4.1 One-vs-all Prediction 

内容:使用之前训练好的分类器来预测标签(概率最大的那一类即为标签,精确度可达94%)。

predict_all.py

import numpy as np
from sigmoid import *

def predictAll(X, all_theta):
    rows = X.shape[0]
    X = np.insert(X, 0, values=np.ones(rows), axis=1)
    X = np.matrix(X)
    all_theta = np.matrix(all_theta)
    h_theta = Sigmoid(X * all_theta.T)

    # np.argmax(arr,axis)返回数组arr中最大值的索引值
    h_theta_max = np.argmax(h_theta, axis=1)
    return h_theta_max + 1

main.py

# scipy.io模块提供了很多函数来处理Matlab的数组
from scipy.io import loadmat  # loadmat方法可以导入Matlab格式数据
import numpy as np
from sklearn.metrics import classification_report  # 常用的输出模型评估报告方法
from one_vs_all import *
from predict_all import *  # 预测h_theta值

data = loadmat('ex3data1.mat')
X = data['X']
y = data['y']
theta = np.zeros(X.shape[1])
all_theta = one_vs_all(X, y, 10, 1)
y_pred = predictAll(X, all_theta)
# classification_report(y_true,y_pred)y_true:真实值,y_pred:预测值
print(classification_report(y, np.array(y_pred)))
# precision recall f1-score support
# 精确率     召回率  调和平均数  支持度(指原始的真实数据中属于该类的个数)

              precision    recall  f1-score   support

           1       0.95      0.99      0.97       500
           2       0.95      0.92      0.93       500
           3       0.95      0.91      0.93       500
           4       0.95      0.95      0.95       500
           5       0.92      0.92      0.92       500
           6       0.97      0.98      0.97       500
           7       0.95      0.95      0.95       500
           8       0.93      0.92      0.92       500
           9       0.92      0.92      0.92       500
          10      0.97      0.99      0.98       500

    accuracy                           0.94      5000
   macro avg       0.94      0.94      0.94      5000
weighted avg       0.94      0.94      0.94      5000

2. Neural Networks

内容:神经网络可以处理比较复杂的非线性模型,这里给出了已经训练好的权重,我们使用前向传播即可。

2.1 Model representation

内容:

theta1:25*401     theta2:10*26

main.py

from scipy.io import loadmat
import numpy as np

data = loadmat('../ex3data1.mat')
X = np.matrix(data['X'])
X = np.insert(X, 0, values=np.ones(X.shape[0]), axis=1)  # axis=1即按列插入
y = np.matrix(data['y'])
weights = loadmat('ex3weights.mat')
theta1, theta2 = np.matrix(weights['Theta1']), np.matrix(weights['Theta2'])
print(theta1.shape, theta2.shape, X.shape, y.shape)

 (25, 401) (10, 26) (5000, 401) (5000, 1)

2.2 Feedforward Propagation and Prediction

sigmoid.py

import numpy as np

def Sigmoid(z):
    return 1 / (1 + np.exp(-z))

main.py(输出a3,即h_theta的值)

from scipy.io import loadmat
import numpy as np
from sigmoid import *  # 激活函数

data = loadmat('../ex3data1.mat')
X = np.matrix(data['X'])
X = np.insert(X, 0, values=np.ones(X.shape[0]), axis=1)  # axis=1即按列插入
y = np.matrix(data['y'])
weights = loadmat('ex3weights.mat')
theta1, theta2 = np.matrix(weights['Theta1']), np.matrix(weights['Theta2'])

# 神经网络-前向反馈
a1 = X
z2 = a1 * theta1.T
# print(z2.shape)  # (5000, 25)
a2 = Sigmoid(z2)
a2 = np.insert(a2, 0, values=np.ones(a2.shape[0]), axis=1)  # 加偏置项,值为1
z3 = a2 * theta2.T
# print(z3.shape)  # (5000,10)
a3 = Sigmoid(z3)  # h_theta
print(a3)

[[1.12661530e-04 1.74127856e-03 2.52696959e-03 ... 4.01468105e-04
  6.48072305e-03 9.95734012e-01]
 [4.79026796e-04 2.41495958e-03 3.44755685e-03 ... 2.39107046e-03
  1.97025086e-03 9.95696931e-01]
 [8.85702310e-05 3.24266731e-03 2.55419797e-02 ... 6.22892325e-02
  5.49803551e-03 9.28008397e-01]
 ...
 [5.17641791e-02 3.81715020e-03 2.96297510e-02 ... 2.15667361e-03
  6.49826950e-01 2.42384687e-05]
 [8.30631310e-04 6.22003774e-04 3.14518512e-04 ... 1.19366192e-02
  9.71410499e-01 2.06173648e-04]
 [4.81465717e-05 4.58821829e-04 2.15146201e-05 ... 5.73434571e-03
  6.96288990e-01 8.18576980e-02]]

进行预测(精确度可以达到97%): 

main.py

from scipy.io import loadmat
from sklearn.metrics import classification_report
import numpy as np
from sigmoid import *  # 激活函数

data = loadmat('../ex3data1.mat')
X = np.matrix(data['X'])
X = np.insert(X, 0, values=np.ones(X.shape[0]), axis=1)  # axis=1即按列插入
y = data['y']
weights = loadmat('ex3weights.mat')
theta1, theta2 = np.matrix(weights['Theta1']), np.matrix(weights['Theta2'])

# 神经网络-前向反馈
a1 = X
z2 = a1 * theta1.T
a2 = Sigmoid(z2)
a2 = np.insert(a2, 0, values=np.ones(a2.shape[0]), axis=1)  # 加偏置项,值为1
z3 = a2 * theta2.T
a3 = Sigmoid(z3)  # h_theta
y_pred = np.argmax(a3, axis=1) + 1  # 每一项的预测值
print(classification_report(y, np.array(y_pred)))

              precision    recall  f1-score   support

           1       0.97      0.98      0.98       500
           2       0.98      0.97      0.98       500
           3       0.98      0.96      0.97       500
           4       0.97      0.97      0.97       500
           5       0.97      0.98      0.98       500
           6       0.98      0.99      0.98       500
           7       0.98      0.97      0.97       500
           8       0.98      0.98      0.98       500
           9       0.97      0.96      0.96       500
          10      0.98      0.99      0.99       500

    accuracy                           0.98      5000
   macro avg       0.98      0.98      0.98      5000
weighted avg       0.98      0.98      0.98      5000

吴恩达机器学习课程中的ex3任务是关于手写数字识别的。在这个任务中,我们使用了一个包含5000个手写数字训练示例的数据集(ex3data1.mat)。每个训练示例都是一个20×20像素的灰度图像,被展开成了一个400维的向量。这些训练示例被存储在数据矩阵X中,其中每一行代表一个手写数字图像的训练示例。 此外,训练集的标签被存储在一个5000维的向量y中。为了与Octave/MATLAB索引兼容,我们把数字零映射为值10,并将数字1至9按其自然顺序标记为1至9。 在导入数据并初始化之后,我们可以开始使用这个数据集进行手写数字识别的任务了。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* [【吴恩达机器学习作业 ex3data1 -- 多分类逻辑回归(Python)](https://blog.csdn.net/calmdownn/article/details/125992325)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] - *3* [吴恩达机器学习笔记---ex3(python实现)](https://blog.csdn.net/qq_45604750/article/details/107628153)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v92^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值