递推算法(简单入门题之洛谷 p1028 数的计算)

本文通过分析NOIP2001普及组的数列计算问题,探讨递推思想在解决复杂问题中的应用。作者首先解释了递推的概念,然后详细解析了题目的意思,并给出了两种不同的递推公式。通过示例代码展示了如何利用递推求解数列的合法组合数。最后,强调了理解和思考在解题过程中的重要性,鼓励读者在学习算法时要耐心细致。
摘要由CSDN通过智能技术生成

什么是递推

其实简单来说,就是对于一些复杂的问题,我们能够通过已知的信息一步一步向前推,或者说向后推,一步一步的靠近问题的真实答案


这里借用洛谷 p1028 讲解递推


[NOIP2001 普及组] 数的计算

题目描述

给出自然数 n n n,要求按如下方式构造数列:

  1. 只有一个数字 n n n 的数列是一个合法的数列。
  2. 在一个合法的数列的末尾加入一个自然数,但是这个自然数不能超过该数列最后一项的一半,可以得到一个新的合法数列。

请你求出,一共有多少个合法的数列。两个合法数列 a , b a, b a,b 不同当且仅当两数列长度不同或存在一个正整数 i ≤ ∣ a ∣ i \leq |a| ia,使得 a i ≠ b i a_i \neq b_i ai=bi

输入格式

输入只有一行一个整数,表示 n n n

输出格式

输出一行一个整数,表示合法的数列个数。

样例 #1

样例输入 #1

6

样例输出 #1

6

提示

样例 1 解释

满足条件的数列为:

  • 6 6 6
  • 6 , 1 6, 1 6,1
  • 6 , 2 6, 2 6,2
  • 6 , 3 6, 3 6,3
  • 6 , 2 , 1 6, 2, 1 6,2,1
  • 6 , 3 , 1 6, 3, 1 6,3,1

数据规模与约定

对于全部的测试点,保证 1 ≤ n ≤ 1 0 3 1 \leq n \leq 10^3 1n103

说明

本题数据来源是 NOIP 2001 普及组第一题,但是原题的题面描述和数据不符,故对题面进行了修改,使之符合数据。原题面如下,谨供参考:

我们要求找出具有下列性质数的个数(包含输入的正整数 n n n)。

先输入一个正整数 n n n n ≤ 1000 n \le 1000 n1000),然后对此正整数按照如下方法进行处理:

  1. 不作任何处理;
  2. 在它的左边拼接一个正整数,但该正整数不能超过原数,或者是上一个被拼接的数的一半;
  3. 加上数后,继续按此规则进行处理,直到不能再加正整数为止。

分析题意

估计在这里,很多小伙伴一脸懵逼,其实我做这道题目的时候,也是题目意思都没能完全理解。

这里我介绍一下我做题理解题意的思路,对于一些题目,如果实在不能理解题意,我说的是实在,那么我们只能依据题目给出的能够理解的地方做题,因为比赛或者考试不会有人为我们分析题目意思,所以我们只能这样做。而这道题,其实利用题目能看懂的部分,结合案例是能够写出来的

题目中能看懂的地方(我认为其他地方是不太好理解的)
在这里插入图片描述
从这里我们可以知道,按照它的要求。给定一个数字 6
1.因为方式1 ,所以 6 (数列6合法)
2.根据方式2 ,我们在前面数列加入一个自然数(不能超过6的一半,因为6最大所以是数列最后一项)
6 1 , 6 2 , 6 3, 重复2 6 2 1 , 6 3 1 一共六种

递推1

其实这里我们能发现,对于一个n,设我们要求的数列种数位 F[n] 。(我们先假设这个问题为递推问题,并试着推)
以 F[3] 为例子
由 F[0] 推向 F[3]
F[0] = 1 为 0
F[1] = 1 为 1
F[2] = 2 为 2 ,21
F[3] = 2 为 3 , 31
那么我们发现,如果把 F[3]中含3的数列中的3都去掉,就变成了这样, 1

同理,把2中的2去掉, 1
所以我们就能发现,F[n]=f[1]+…+f[n/2]+1

递推1ac DEMO

#include <stdio.h>
int f[1001]={1,1};
int main()
{
	int n;
	scanf("%d",&n);
	for(int i=2;i<=n;i++)
	{
		f[i]+=1;
		for(int j=1;j<=i/2;j++)
		f[i]+=f[j]; 
	}
	printf("%d",f[n]);
	return 0;
} 

递推2

1.经过递推1,我们发现,F[2n]和F[2n+1]的数量是相同的,例如F[2]=F[3]=2.
2.如果我们想要知道F[500],这里假设F[499]是知道的,那么对于F[499],我们在数列后面都加上了F[1]…F[249],这里的F[249]是N/2来的。那么对于F[500],我们递推1的公式都加上了 F[1]…F[250],我们发现,好家伙,缺少了一个F[250],所以我们的F[500]=F[499]+F[250]抽象成公式就是 F[N]=F[N-1]+F[N/2]

总结以上,我们如果n为偶数,那么F[N]=F[N-1]+F[N/2]
如果n为奇数,那么 F[N]=F[N-1]

递推2ac DEMO

#include <stdio.h>
int f[1001]={1,1};
int main()
{
	int n;
	scanf("%d",&n);
	for(int i=2;i<=n;i++)
	{
		if(i%2==0) f[i]=f[i-1]+f[i/2];
		else f[i]=f[i-1];
	}
	printf("%d",f[n]);
	return 0;
}

总结

其实这些算法和算法题目,不是一天两天就能达到一定的高度的,如果有一件事能够速成,那么这它的价值也一定是平平庸庸的。所以在学习的时候,不要一味求快,我们要认真分析思考每一个问题
最后,星光不负赶路人!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

我不会画饼鸭

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值