需求侧响应在综合能源系统运营中扮演着至关重要的角色,是确保系统供需平衡和互动协同的核心。伴随能源互联网的快速演进,综合能源系统中多种能源的相互补充和耦合为需求侧资源的调度提供了更广阔的优化可能性。因此,构建一个高效的多能源、多类型需求响应数学模型对于提升系统性能至关重要。本文聚焦于不同情景下的综合能源系统需求侧响应优化调度,研究了包括综合需求响应数学模型、峰谷分时电价模型、电动汽车需求响应模型以及综合能源系统双目标模型。
进一步,为降低经济成本并最大化需求侧柔性资源的调度潜力,本文构建了一个包含电热综合需求响应的园区源储容量双层优化配置模型,目的是最小化系统的总规划成本和运行成本。采用嵌套CPLEX算法求解该模型,并以中国北方某地区的小型可再生能源综合能源系统(RIES)为案例进行分析,展示了实施电热综合需求响应前后规划方案的差异。
电动汽车(EV)的兴起为综合能源系统(IES)提供了灵活的电力负荷和分布式储能资源,使得将EV纳入IES的考虑成为一种趋势。在这一背景下,本研究针对含EV的IES考虑需求响应的优化调度问题,通过上层需求响应优化调度确定EV用能负荷,并作为下层EV实时调度的决策变量。接着,运用凸优化算法确定EV在当前时段的最优充放电策略,实现EV的实时调度,从而提升系统的经济性和能源利用效率。
最终,案例分析结果表明,在进行园区级综合能源系统的优化配置时,纳入电热综合需求响应是降低成本的有效策略。
需求侧响应是一种通过调整能源消费行为以适应电网需求变化的策略。能源互联网下的需求侧响应包括价格型需求响应(Price-Based Demand Response, PBDR)、激励型需求响应(Incentive-Based Demand Response,IBDR)和替代型需求响应(Alternative Demand Response,ADR)[6]。由于本文考虑不同场景为楼宇用户区域与电动汽车,故只考虑在价格型需求响应和激励型需求响应下,二者的电热负荷受影响程度。
图1综合需求响应的分类
2.1价格型需求响应模型
2.1.1建立需求价格弹性矩阵
需求价格弹性矩阵可以表示用户需求与能源价格之间的相关程度,其表示在特定周期内能源价格一定程度的变动所引起的用户需求量变动的程度,一般用需求价格弹性系数表示该程度。设调度周期为
,并将该周期划分为谷、峰、平三个时段,则需求价格弹性矩阵
、
、
分别表示峰、平、谷时段的自响应需求价格弹性矩阵;
为需求价格弹性系数;下标
、
、
分别表示峰、平、谷时段;
、
、
、
、
、
分别表示峰—平、峰—谷、平—峰、平—谷、谷—峰、谷—平时段的互响应需求价格弹性矩阵。
对于用户用能量变化率与能源价格变化率之间的比值的定义,称为需求价格弹性系数,其定义如式(2)所示。当能源价格在某一时刻发生波动时,用户通常会调整他们的能源使用计划,选择在价格较低的时段使用能源,而减少当前时段的能源消耗。这种基于价格变化的即时用能调整行为被称为“自响应”,在这种情况下,需求对价格的弹性系数是负值。另一方面,用户把能源需求从一个时段转移到另一个时段的行为被称为“互响应”,在这种情况下,需求对价格的弹性系数是正值。
(2)
式中:
、
表示
时刻用户参与需求响应前的用能量及 响应后的用能变化量;
为
时刻的自响应需求价格弹性系数;
为
时刻相对于
时刻的互响应需求价格弹性系数;
、
、
、
为
、
时刻用户参与需求响应前的 用能价格及响应后的能源价格变化量。
2.1.2建立价格型需求响应模型
(1)传统的弹性矩阵模型中,时段
的电量变化
是由所有时段的电价变化
共同影响的,而根据负荷特性可知,时段
的电价变化对本时段用电量的影响明显大于其他时段,因此为了更加准确的预测,可引入弹性影响权因子来区分不同时段电价的重要程度,以此减少对时段
以外时间段的作用效果[7]。
弹性影响权因子
定义为:某时段电价变化对某时段内用电量变化的影响权重。
反映了时段
的电价变化在时段
所产生的电量变化
占时段
总电量变化的比例,表示为:
(3)
电力作为一种时间敏感的独特商品,其价格具有实时波动的特性。同时,电力的消耗可以在时间上进行调整和分配。因此,任何特定时间段内电价的变化不仅会影响该时段的电力使用,还可能对其他时段的电力消耗产生影响。故依据需求的价格弹性为需求变化的百分比(
)除以价格变化的百分比(
),可得需求价格弹性矩阵
如下式所示:
(4)
故峰谷分时电价的电价变化率和用电量变化率之间的关系可以表示为:
(5)
从而得到实行分时电价政策后的用电量为:
(6)
(2)峰时分时电价主要内容:
分时电价政策体系的核心内容包括两个方面:峰谷时段的划分和响应的峰谷电价的确定[8,9]。
根据相关文献当中对于一天中某地区的峰谷划分,可知凹谷为00:00-07:00;两个峰谷为07:00-12:00和16:00-21:00。
根据国内各省市的需求和学者的研究,可得到该地区用户的电量电价弹性系数如表1所示。
表1用户电量电价弹性系数表