1.题目代码:
e = 65537
n = 248254007851526241177721526698901802985832766176221609612258877371620580060433101538328030305219918697643619814200930679612109885533801335348445023751670478437073055544724280684733298051599167660303645183146161497485358633681492129668802402065797789905550489547645118787266601929429724133167768465309665906113
dp = 905074498052346904643025132879518330691925174573054004621877253318682675055421970943552016695528560364834446303196939207056642927148093290374440210503657
c = 140423670976252696807533673586209400575664282100684119784203527124521188996403826597436883766041879067494280957410201958935737360380801845453829293997433414188838725751796261702622028587211560353362847191060306578510511380965162133472698713063592621028959167072781482562673683090590521214218071160287665180751
2.复现:
直接分解n,发现可以分解。
然后就是常规的解密:
import gmpy2
import libnum
e = 65537
n = 248254007851526241177721526698901802985832766176221609612258877371620580060433101538328030305219918697643619814200930679612109885533801335348445023751670478437073055544724280684733298051599167660303645183146161497485358633681492129668802402065797789905550489547645118787266601929429724133167768465309665906113
dp = 905074498052346904643025132879518330691925174573054004621877253318682675055421970943552016695528560364834446303196939207056642927148093290374440210503657
p=13468634736343473907717969603434376212206335187555458742257940406618189481177835992217885676243155145465521141546915941147336786447889325606555333350540003
q=18432009829596386103558375461387837845170621179295293289126504231317130550979989727125205467379713835047300158256398009229511746203459540859429194971855371
c = 140423670976252696807533673586209400575664282100684119784203527124521188996403826597436883766041879067494280957410201958935737360380801845453829293997433414188838725751796261702622028587211560353362847191060306578510511380965162133472698713063592621028959167072781482562673683090590521214218071160287665180751
phi=(p-1)*(q-1)
d=gmpy2.invert(e,phi)
m=pow(c,d,n)
print(hex(m))
print(libnum.n2s(int(m)))
#0x666c61677b776f775f6c65616b696e675f64705f627265616b735f7273613f5f39383932343734333530327d
#b'flag{wow_leaking_dp_breaks_rsa?_98924743502}'
这道题想考dp泄露,用一下这个方法:
import gmpy2
import libnum
e = 65537
n = 248254007851526241177721526698901802985832766176221609612258877371620580060433101538328030305219918697643619814200930679612109885533801335348445023751670478437073055544724280684733298051599167660303645183146161497485358633681492129668802402065797789905550489547645118787266601929429724133167768465309665906113
dp = 905074498052346904643025132879518330691925174573054004621877253318682675055421970943552016695528560364834446303196939207056642927148093290374440210503657
c = 140423670976252696807533673586209400575664282100684119784203527124521188996403826597436883766041879067494280957410201958935737360380801845453829293997433414188838725751796261702622028587211560353362847191060306578510511380965162133472698713063592621028959167072781482562673683090590521214218071160287665180751\
for x in range(1, e):
if(e*dp%x==1):
p=(e*dp-1)//x+1
if(n%p!=0):
continue
q=n//p
phi=(p-1)*(q-1)
d=gmpy2.invert(e, phi)
m=pow(c, d, n)
print(hex(m))
print(libnum.n2s(int(m)))
#0x666c61677b776f775f6c65616b696e675f64705f627265616b735f7273613f5f39383932343734333530327d
#b'flag{wow_leaking_dp_breaks_rsa?_98924743502}'