数列求和加强版(竖式加法计算):

本文介绍了如何利用竖向加法计算处理大整数相加,避免了long long类型溢出的问题。通过将每位数字存储在数组中,实现了大整数的相加,有效解决了编程竞赛中遇到的经典问题。这种方法对于理解和解决大数运算具有一定的启发意义。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

今日分享的是pta上一道比较经典的题目,方法非常独特新颖:

#include<stdio.h>
int main()
{
    long long i,a,n,sum=0,s=0;
    scanf("%lld %lld",&a,&n);
    for(i=1;i<=n;i++)
    {
    	sum=sum*10+a;
    	s+=sum;
	}
	printf("%lld",s);
    return 0;
} 

 这个代码很显然不过,当时我也不知道为什么一直不给我通过,因为我已经把long long都用上了,但是仍然不对;

后来知道了N个A的数太大了,long long也远远不够,此时我了解到了一种方法“竖向加法计算”;

代码如下:

#include <stdio.h>
//int在正数的范围是1~2147483647
int main(int argc,char const *argv[])
{
	int A,N;
	int s[100001]={0};		//记录结果的各个位数,通过计算当A=9,N=100000时,最多为100001个位数 
	scanf("%d %d",&A,&N);
	int jinwei=0,num=N,weishu=0;  	//num来辅助各个位数的计算   ,  weishu用来判断输出时的有效最高位 
							//接下来进行竖式加法计算 
	for(int i=0; i<N+1 ;i++)//i=0表示从个位开始相加 ,且最多到N+1位(i的值最多为N)
	{
		s[i]=num*A+jinwei;			//这步的最大值为9*100000=900000<2147483647,往前面的位数只能比该数小,所以这步不会越界 
		jinwei=s[i]/10;				//下一位需要进位多少
		s[i]=s[i]%10;				//该位数上最后是与10的余数 
		num--;						//为更高位的计算做准备 
	}
	
	for(int i=N; i>=0 ;i--)//用来判断输出时的有效最高位(筛选作用) 
	{
		if(s[i]!=0)
		{
			weishu=i;
			break;
		}
	}
	
	for(int i=weishu; i>=0 ;i--)//从有效的最高位开始逐个输出
	{
		printf("%d",s[i]);
	}
	
	return 0;
}

大致方法就是让数的各位数分别存放在数组里面,这样就不会出现越界情况了!

希望大家也能熟悉掌握这种方法;

今日内容到此结束,明天继续;

奥利给!!!!

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值