ZOJ 1107 FatMouse and Cheese 【DP】

题目描述

FatMouse has stored some cheese in a city. The city can be considered as a square grid of dimension n: each grid location is labelled (p,q) where 0 <= p < n and 0 <= q < n. At each grid location Fatmouse has hid between 0 and 100 blocks of cheese in a hole. Now he’s going to enjoy his favorite food.

FatMouse begins by standing at location (0,0). He eats up the cheese where he stands and then runs either horizontally or vertically to another location. The problem is that there is a super Cat named Top Killer sitting near his hole, so each time he can run at most k locations to get into the hole before being caught by Top Killer. What is worse – after eating up the cheese at one location, FatMouse gets fatter. So in order to gain enough energy for his next run, he has to run to a location which have more blocks of cheese than those that were at the current hole.

Given n, k, and the number of blocks of cheese at each grid location, compute the maximum amount of cheese FatMouse can eat before being unable to move.

Input Specification

There are several test cases. Each test case consists of

a line containing two integers between 1 and 100: n and k
n lines, each with n numbers: the first line contains the number of blocks of cheese at locations (0,0) (0,1) … (0,n-1); the next line contains the number of blocks of cheese at locations (1,0), (1,1), … (1,n-1), and so on.
The input ends with a pair of -1’s.
Output Specification

For each test case output in a line the single integer giving the number of blocks of cheese collected.

Sample Input
3 1
1 2 5
10 11 6
12 12 7
-1 -1
Output for Sample Input
37

大意

给定一个二维矩阵,每个格子上有一个数字。从(0,0)开始走,每次最大走K步,求走过的递增路径的最大和。

算法思想

DP; 对于二维数组的DP,优先考虑记忆化搜索。每个位置可以有4 * k种走法。只需求得下一位置的最大递增和再加上当前位置的数字,即为该解。对4k种解法取max得到当前最优解。

状态转移方程: f[i, j] = max{f[i + k, j + k]} + g[i, j]

代码

#include <iostream>
#include <cstring> 
using namespace std;
const int N = 110;
int g[N][N], f[N][N];
int n, k;
int dx[] = {0,0,-1,1};
int dy[] = {1,-1,0,0};
int dfs(int x, int y) {
	if(f[x][y]) return f[x][y];
	int mx = 0;
	for(int i = 1; i <= k; i ++) {
		for(int j = 0; j < 4; j ++) {
			int tx = dx[j]*i + x;
			int ty = dy[j]*i + y;
			if(tx >= 0 && tx < n && ty >= 0 && ty < n && g[tx][ty] > g[x][y])
				f[x][y] = max(f[x][y],dfs(tx, ty));
		}
	}
	f[x][y] += g[x][y];	// 加上这一格的 
	return f[x][y];
}
int main() {
	while(cin >> n >> k) {
		if(n == -1) return 0;
		memset(f, 0, sizeof f);	//勿忘初始化
		for(int i = 0; i < n; i ++)
			for(int j = 0; j < n; j ++)
				cin >> g[i][j];
		cout << dfs(0,0) << endl;
	}
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值