李宏毅-机器学习-笔记-P2

 P2 机器学习基本概念(二)

一、机器如何找到函数,三步。

(一)Model——Function with unkonwn parameters

        写出一个带有未知参数(parameter)的函数f,即先猜测函数可能是什么样子,基于我们对此任务本质的了解-based on domain knowledge。举例:y=b+wx:y是要预测的东西,x是已经知道的信息-feature,w-weight和b-bias是未知的、要通过资料找出来的

(二)Define Loss from Training Data

        Loss is a function of parameters,Loss也是也个函数,其输入是model里的参数b和w,即L(b,w)。其输出的是给b和w一组数值时,判定这组数值是好还是不好。

        例如:预计输出为一个数值时,给出一组b和w后,再带入已经得到的标注好的数据,带有label(真实值),计算出y(预测值)的值,再使用比如两值相减去绝对值,得到大量估计值与真实值之间的差距e,再求出e的平均值,得到L,L越小代表这组参数越好,L越大代表这组参数越差。根据不同需求,选择不同的e的计算方法。下图为b和w不同组合时,得到的L。

(三)Optimization(最佳化)

        找到一组最小的一组w和b能够使L最小的方法——Gradient Descent

        例如:L只有一个参数w,w不同时得到的L也是不同的,可以画出Error Surface,先随机选出一个点w0,然后w为w0时的微分是多少,即看斜率。微分<0,w变大一步;微分>0,w减小一步。步伐应该多大?1.越斜,步伐越大2.取决于η=learning rate(学习率):是由自己设置——此种参数叫做hyper parameter(超参数),学习率越大,w变化越快,反之,则反。 

        然后不断更新,当机器达到w更新次数时停止,此次数由自己设置,也是超参数;或者找到了最好的w值停止。但是此种方法会有找到了Local minima而非是global minima的问题。

然后就可推广到两个参数的情况。

        但这以上三步都是根据现有已知的资料处理,是Training(训练)的过程,而我们真正在意的是还未发生的事,即对未知进行预测。

        然后预测后,发现此任务呈现周期性,结果与前七天有关,每七天一个周期,将考虑天数改为7天,w即改为wj,j是1~7,wj代表前第j天的参数,再乘上前第j天人数xj,最后累加再加常数,得到这天的预测人数,则又修改model看能否再提高准确率,发现有所提高,又增加为28天,又有所提高,再修改为56天,发现提高不大。

二、第一步:Piecewise Linear Curves

        Linear Model也许太过简单,形如y=b+wx称作Linear model,w可以改变这个model的斜率,设定不同的b来,改变直线与y的交点,无论如何更改b和w,都是一条直线,无法拟合先增大后减小的线,如下图红色线。这种情况说明linear model有限制,我们称为model bias。因此我们需要更复杂的、更有弹性的model。

        上图红色线可以组合相加(常数+蓝线)来得到,这种 类似于锯齿状的线,我们成为piecewise linear curve,都可以用上述方法来表示。即使是平滑的、弯曲的曲线,只要选取足够多的点,对应上图中折线的折点,那么也可以足够多的蓝线组合,来逼近表示出来。那怎么表示出来这条“蓝线”(通常称为hard sigmoid)呢?——使用sigmoid函数(s型的function)来逼近表示。

        使用w改变斜率,b来左右移动,c来改变高度,从而可以逼近贴合任意一条曲线。从而减少了model的bias,使我们的model更有弹性,更多的feature。

        0:b是上述的“常数+蓝线”中的常数,控制曲线上下移动,使曲线能够逼近,是整个红线function的常数。而后边的1.2.3是“常数+蓝线”中的蓝线。现在也就是完成了开始任务前的设函数的部分,即为了更好的拟合逼近此任务的函数,由linear model变为现在的更有弹性的Piecewise Linear Curves。

        然后就像之前linear model一样,考虑之前更多天的影响,将函数增加了更多的features,现在函数复杂了之后仍然可以考虑前几天的影响,即增加more features。其中的wij代表在组成“红线”的第i个“蓝线”函数上的前第j天的影响参数。最后得到了增加参数的function,如下图:

        sigmoid函数括号里详解,虽然看着很复杂,可以用线性代数来简洁表示:

        r经过sigmoid函数,然后再与c的转置相乘,再加b,最后得到y,总体过程如下图所示:

        其中的x是feature是已知的,而常数b、向量b、w、c转置都是未知的参数,然后把所有未知矩阵的一行或者一列都放在一起,组成θ矩阵,一律统称θ(如下图),然后至此就完成了机器学习框架的第一步:定义一个含有未知参数的方程

三、第二步:Loss函数变化

        有了新的model后,Loss函数也会有所不同,之前Loss的参数是w和b,用θ代表所有的未知参数后,Loss函数的变量也变为了未知参数矩阵θ:L(θ),则现在此Loss函数就是表示的当θ为一组数值时,会有多好或者多不好。

(一)给定未知参数θ一组数值

(二)带入feature(已知的x)得到预测值y

(三)再计算预测值与真实值label之间的差距e

(四)再把所有的e加起来求平均

四、Optimization of new model

        optimization就是找一组能够使Loss最小的θ,称为θ*,Loss越小越好。

(一)首先初始随机选一个θ0

(二)对每一个未知参数都去计算它对L微分,之后集合起来就是一个向量,称为Gradient

(三)算出Gradient后就要更新参数了,由θ0到θ1,再重复。

五、Epoch与Update

        假设我们有N个资料,我们并不是用所有的资料来算出一个L,然后再算gradient,然后再更新θ。而是将全部N个资料,将每B个为一组(自己设置,也是一个hyper parameter),称为一个batch,给定一个θ0后,用一个batch来算出一个L1,然后在算出gradient,来更新参数得到θ1。然后使用θ1在下一组batch上计算L2,然后计算gradient,然后更新参数得到θ2,然后重复下去。

        所有batch算过一次称作一个epoch,每一次更新参数叫做一次update。例如:N=10000,B=10,则1epoch有1000updates;N=1000,B=100,则1epoch有10updates。

六、ReLU函数        

可以使用其他常见函数来表示出sigmoid

        两个ReLU相加可以得到Sigmoid,两个ReLU右侧斜率相反,相加正好为一个常数,左侧都是零,相加正好是SIgmoid函数。

        注意观察图像,明白是相加而不是分段函数!

七、再次修改模型-Deep Learning

        本来是(b+wx)通过θ函数得到a矩阵,现在也可以通过ReLU函数,然后这个过程可以反复的多做几次,通过下图方便看出,把a看作开始的x,再与w'相乘加b'(与前一个过程的w和b不是同一个参数,是另外的参数),再通过sigmoid函数或者ReLU函数,可以反复多次,至于多少次可以自行决定,又是一个hyperparameter。

        还差一个好名字,其中这些sigmoid和relu函数叫做Neuron(神经元),很多的Neuron叫做Neural Network(神经网络),后来每一列Neuron叫做hidden layer,很多hidden layer叫做deep,整套技术叫做Deep learning。

        思考问题:1.理论上只要足够多的sigmoid或者relu函数,就可以逼近任何一个曲线,为什么要把模型变深,而不是变胖呢?2.既然层深好,那为什么不是模型越深越好呢?

  • 9
    点赞
  • 13
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值