3.9学习(读论文+深度学习视频)

本文讨论了如何通过限制模型的利普西茨常数来提高对抗性稳健性,如ParsevalNetwork中的正交约束。然而,这在抵御强力攻击上效果有限。文章还介绍了卷积神经网络的基础结构,包括卷积、池化以及softmax和交叉熵损失在内的重要组件。
摘要由CSDN通过智能技术生成

今日论文:Improving Adversarial Robustness by Learning Shared Information(未完)

对抗正则化

正则化的目的:限制解空间,防止过拟合

利普西茨常数

C = s u p ∣ f ( x 1 ) − f ( x 2 ) ∣ x 1 − x 2 C=sup \frac {\left| f(x_1)-f(x_2) \right|}{x_1-x_2} C=supx1x2f(x1)f(x2)

如果一个函数的利普西茨常数非常小,那么这个函数对输入也就不那么敏感,从而使得“微小”的扰动无法改变函数的输出结果。

Parseval Network

限制网络的利普西茨常数常数。对所有线性层(包括卷积层、全连接层)的权重矩阵W施加一个正交的约束

但是限制模型的利普西茨常数只能有限度地增强模型的对抗稳健性,并不能有效防御较强的对抗攻击。

深度学习视频

1.1卷积

卷积层

卷积的目的:进行图像特征的提取

卷积特性:拥有局部感知机制;权值共享
在这里插入图片描述

卷积核的channel==输入特征的channel

卷积核的个数 == 输出特征的channel

池化层

目的:对特征图进行稀疏处理,减少数据运算量
在这里插入图片描述

1.2 卷积神经网络基础

softmax

在这里插入图片描述

交叉熵损失

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

o_o O

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值