- 博客(20)
- 收藏
- 关注
原创 6. pytorch 卷积神经网络
卷积神经网络(CNN)基础摘要 卷积神经网络(CNN)是计算机视觉领域的核心深度学习模型,通过模拟人类视觉系统实现高效的图像处理。CNN的核心组件包括: 卷积层:使用局部感知和权重共享机制提取特征,通过卷积核滑动计算生成特征图,具备平移不变性优势 池化层:通过最大/平均池化降维,保留关键特征同时减少计算量 全连接层:整合特征进行最终分类决策 图像数据以多维张量形式输入([高度,宽度,通道]),经过预处理(去均值、归一化)后进入网络。CNN通过层次化结构从浅层(边缘纹理)到深层(语义特征)逐步提取信息,其参数
2025-12-22 16:03:25
1608
1
原创 5. pytorch第一个神经网络
本文介绍了使用PyTorch构建简单前馈神经网络进行二分类任务的方法。第一部分展示了基础实现流程,包括数据准备、模型定义(10-5-1结构)、训练循环和结果可视化。第二部分通过散点图分类任务,演示了神经网络处理非线性决策边界的能力(圆形分类)。代码采用nn.Sequential简化模型构建,并详细讲解了各组件功能,如ReLU激活函数和Sigmoid输出层的作用。通过损失曲线和预测结果的可视化,直观呈现了模型的学习过程,为后续更复杂网络(如CNN)的学习奠定了基础。
2025-12-22 11:45:06
981
原创 4. pytorch线性回归
PyTorch实现线性回归摘要: 本文演示了使用PyTorch框架实现线性回归的全过程。通过生成带噪声的二维特征数据,建立包含权重和偏置的线性模型,采用均方误差损失函数和SGD优化器进行训练。核心代码展示了PyTorch的标准训练流程:前向传播计算预测值、反向传播更新参数、迭代优化损失函数。训练后模型成功逼近真实参数(权重[2,3],偏置4),并通过可视化展示了损失下降曲线和预测效果对比。该实现虽简单,但体现了神经网络训练的核心机制,为后续复杂模型奠定基础。
2025-12-21 16:00:22
848
原创 3. pytorch中数据集加载和处理
在深度学习训练过程中,数据处理和加载是第一步。它涉及如何读取数据、清洗数据、批量提供给模型训练。如果数据加载慢或不高效,会拖慢整个训练过程。为了高效地处理数据,PyTorch 提供了强大的工具,包括和,帮助我们管理数据集、批量加载和数据增强等任务。自定义 Dataset:通过继承来加载自己的数据集。DataLoaderDataLoader按批次加载数据,支持多线程加载并进行数据打乱。数据预处理与增强:使用进行常见的图像预处理和增强操作,提高模型的泛化能力。加载标准数据集。
2025-12-20 17:46:40
879
原创 2. pytorch神经网络基础
本文介绍了PyTorch神经网络的基础知识,包括神经元结构、激活函数、网络层级和损失函数。主要内容为:1)神经元通过加权求和与偏置处理输入信号;2)常用激活函数(Sigmoid、Tanh、ReLU、Softmax)的作用与特性;3)神经网络层级(输入层、隐藏层、输出层)的功能区别;4)回归和分类任务中常用的损失函数(MSE、交叉熵)。文章通过数学公式、PyTorch代码示例和类比说明,帮助读者理解神经网络的基本原理和实现方法。
2025-12-18 21:19:27
792
原创 1. pytorch基础概念介绍
PyTorch是一个开源的Python机器学习库,基于Torch库开发,支持GPU加速计算和自动微分。其核心特性包括动态计算图、张量计算和丰富的API。PyTorch采用分层架构,上层提供Python接口,底层通过C++和CUDA实现高性能计算。主要模块包括张量操作(类似NumPy但支持GPU)、神经网络构建、优化器和数据加载工具。PyTorch特别适合深度学习研究和开发,广泛应用于计算机视觉、自然语言处理等领域。学习PyTorch需要一定的深度学习基础,重点关注其API使用而非底层实现细节。
2025-12-17 22:17:37
720
原创 overleaf + zotero写latex论文
本文介绍了使用Overleaf和Zotero撰写LaTeX论文的方法。首先概述了LaTeX作为专业排版系统的特点,以及BibTeX参考文献管理工具和Overleaf在线编辑器的功能。重点讲解了在Overleaf中选择ACL论文模板的操作步骤,并详细解析了模板文件结构,包括主文件(.tex)、参考文献文件(.bib)和样式文件(.sty/.bst)的作用。文章还总结了LaTeX的基本语法,涵盖文档结构、正文排版、浮动元素(图表)处理和参考文献引用等核心内容,为学术写作提供了实用指导。
2025-12-15 13:52:35
1200
原创 pip install 全面笔记:从入门到进阶
本文全面介绍了Python包管理工具pip install的使用方法,包括基础直接安装和源码安装两种方式,详细讲解了常用参数如版本指定、依赖管理、升级等操作。同时提供了国内镜像源配置方案以加速下载,并对比了不同安装方式的优缺点。文章还给出了开发环境与生产环境的最佳实践建议,帮助开发者从入门到精通掌握pip install工具链,提升Python项目依赖管理效率。
2025-09-07 20:12:39
1464
原创 windows系统git下载和ssh配置
在 Windows 系统中,Git 是最常用的版本控制工具之一,而 SSH(Secure Shell)密钥则提供了一种安全、高效、无密码交互的远程仓库访问方式。安装 Git下载并安装适用于 Windows 的 Git,确保命令行环境可用;配置 Git 用户信息设定全局user.name与user.email,确保提交记录准确、有迹可循;生成 SSH 密钥对在本地使用命令生成一对 SSH 密钥(包含私钥id_rsa与公钥id_rsa.pub),用于身份验证;注册公钥至远程平台。
2025-07-09 13:11:10
1595
原创 无框架极简Agent客户端实现(LLM + MCP + RAG接口调用)
在很多 LLM 应用中,常见的智能体框架包括 LangChain、AutoGPT、CrewAI 等。我们尝试不依赖任何 Agent 框架,而是用 TypeScript 亲手实现了一套简单的 Agent 逻辑✅ 调用RAG(检索增强生成)接口为LLM注入上下文知识✅ 调用 OpenAI LLM(如 GPT-4o)流式生成对话✅ 调用外部工具在写文件/抓网页等✅ 使用 MCP 协议启动多个“工具智能体”进行协同可以理解为一个极简的多工具智能体原型,也是学习 Agent 系统简单切入点。
2025-07-07 14:12:06
747
原创 MCP和开源Agent框架整理
第一阶段:LLM 仅依赖训练数据回答,缺乏工具调用能力。第二阶段:增加上下文输入,可调用工具但交互不自然。第三阶段:构建底层架构,LLM 能接入外部应用,系统实现可维护性。MCP打通上下文与工具接入,“给 agent 装上执行工具的统一接口”;Agent 架构定义 agent 内部如何思考、通信和执行;Agent 编排将多个架构合理协作组合完成复杂任务;开源框架则将上述三者封装成不同级别和适配场景的开发工具,为设计者提供落地路径。
2025-07-07 14:11:30
1211
原创 AI Agent基础概念
AI Agent 是一种具备自主推理、调用工具和执行任务能力的智能系统,区别于只能聊天的大语言模型,它“能思考也能动手”。Agent 的三大核心组件是:模型(大脑)、工具(手脚)、编排层(调度器),共同支持任务执行闭环。推理框架(如 ReAct、CoT、ToT)是 Agent 的“思维模式”,决定其如何思考、行动、调整直到完成任务。工具是 Agent 通往现实世界的桥梁,主要分为三类:Extension(后端闭环调用)、Function(前端控制函数)、Data Storage(知识记忆与检索)。
2025-07-07 14:10:59
895
原创 解决Halo博客文章中gitee外链图片无法显示的问题
在使用Halo文章中的图片链接来自 Gitee 图床,但在 Halo 博客中却无法正常加载显示。Gitee 图床图片防盗链机制。很多时候在本地或者某些博客平台能正常显示图片,但在 Halo 这样的独立博客中却失效了,本质就是缺少referrer控制。遇事别慌,论坛走一波,关键词比你“冥想”重要一百倍;保留前人博客和整理笔记的习惯值得坚持;当时应该提取号关键词:说清楚平台/场景+提取其他回答的关键词分析,得出关键的搜索词条;
2025-07-07 14:10:15
977
原创 使用nvm安装和管理node.js
Node.js 的更新迭代非常迅速,不同项目间常常需要搭配不同版本的 Node。为了避免频繁手动卸载、重装所带来的麻烦,你可以使用一个专门的版本管理工具——🔄 轻松安装不同版本的 Node.js💡 一句话就切换版本,无需 root 权限❌ 避免旧版本残留和路径冲突安装最新的 LTS 或者项目所需的精确版本都能轻松实现。本文基于windows实现nvm安装和nodejs的切换。安装nvm;用nvm安装和切换不同版本的node.js;nvm和node的环境变量不需要再配置;
2025-07-07 14:02:03
3949
1
原创 typora+gitee+PIcGo搭建个人博客图床
当上传本地markdown文件到csdn或者自己的博客网站时,本地图片连接会失效。所以,我们可以结合gitee和picGo软件案件自己的个人图床,解决该问题,只要gitee仓库还在,不用担心图片和谐和稳定问题。什么是图床图床是一种在线存储图片的服务,通常用于在网页、博客等互联网平台上存储和分享图片。图床服务允许用户将图片上传到服务器,并生成一个唯一的URL链接用于访问这些图片。这样一来,用户可以在发布文章、发表评论或者分享内容时,直接引用这些图片的链接,而无需将图片文件直接插入到内容中。
2025-06-29 15:51:27
955
转载 win10系统下inno setup 打包程序因权限不足无法执行问题解决方案
以为万事大吉,但安装后执行程序时,居然没有反映,经查找,是由于win10系统权限管理非常严格,因为我写的程序在运行时会自动在程序目录中创建一个“temp”文件夹,用于下载数据时文件格式转换过程中临时数据的存放,win10系统中,C盘的数据如果你要进行修改或删除,每次都会提示要有管理员的权限(就是要能读、写的权限),我试着将安装目录所有用户增加完全控制的权限后,程序正常执行。但每次都要通过手工增加这个权限也是非常麻烦的,因此上网找了好多资料,都是说要增加管理员权限,即让打包后的程序使用管理员身份运行。
2024-11-28 00:10:20
426
转载 解决 HTTPS握手失败报错:_Received fatal alert_ handshake_fa
对比握手成功和握手失败的协议报文,发现握手失败报文 main, WRITE: TLSv1 Handshake, length = 163 main, READ: TLSv1.2 Alert, length = 2 main, RECV TLSv1 ALERT: fatal, handshake_failure 发现了问题,客户端发起了一个TLSv1 握手,此时服务器端却发出了一个TLSv1.2Alert警告,拒绝握手连接。: 但是以上并没有解决我的问题,后来我是这样做的,可供参考。如有侵权,请联系删除。
2024-11-28 00:08:20
1116
转载 jdk没有jre的解决方法
输入bin\jlink.exe --module-path jmods --add-modules java.desktop --output jre,
2024-11-27 23:34:56
1302
原创 IDEA+exej4+InnoSetup打包java项目为exe可执行文件
将自己的java项目打包导出为windows桌面程序(exe)比较麻烦,我们希望达到的效果是导出的exe文件可以再其他没有java环境的电脑运行。IDEA导出项目的jar包;exe4j软件(exe4j下载链接)第一次打包生成依赖java环境的exe可执行文件;Inno Setup软件()第二次打包生成不依赖环境的安装包。具体操作步骤见下文。在Java开发中,JAR(Java ARchive)包是一种将多个Java类文件及相关资源文件(如图像、配置文件等)打包成一个文件的格式。
2024-11-27 23:30:57
1690
转载 git报错:ssh connect to host github.com port 22 Connection timed out
但可以判断,确实是网络域名解析出现了问题,下面将采用手动修改hosts文件的方式解决。git、命令行都无法正确解析域名,但浏览器可以,有些奇怪。但是,ping了一下github,发现请求超时。
2024-11-25 23:25:34
531
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅