废话不多说,自己看注释,原理大家都懂,不懂原理的话先看别的原理教程,此算法次数无限加,时间效率为log2(n)
快速模幂算法具体实现如下(两次循环,比较易懂)
# 快速模幂运算 x:底数 n:次数 p:模数
def quickMod(x,n,p):
# 令结果为1
result = 1
# 列表生成式将次数用二进制表示
n_b = list(int(i) for i in bin(int(n))[2:])
# 二进制数逆转
n_b.reverse()
# results_list[i]表示 x^(2^i) mod p 的值,就是x的2的i次方的值
results_list = [x]
# result_list = [] 为z^n mod p 分项的值,就是results_list[i]*n_b[i]
result_list = []
# 对其n的二进制进行遍历 顺便通过 results_list[i+1] = results_list[i]^2 然后添加到列表results_list,再和n_b逐项相乘
for i in range(len(n_b)):
re = (pow(results_list[i],2))%p
results_list.append(re)
result_list.append(results_list[i]*n_b[i])
# 这里三行代码用于调试,看不懂的话可以自己删掉注释
# 打印n的二进制表达式,分别是2^0,2^1...2^x
#print(n_b)
# 打印x^(2^i) mod p 的值的列表results_list和z^n mod p的值的列表result_list
#print(results_list)
#print(result_list)
# 将result_list中不为0的值逐项相乘得到result
for r in result_list:
if r:
result = (result*r)%p
return result
if __name__ == '__main__':
print(quickMod(7,20000000000,23))
如下算法为上面的改进算法,但是不易看懂,大家可以试着看
# 快速模幂运算 x:底数 n:次数 p:模数
def quickMod(x,n,p):
# 令结果为1
result = 1
# 列表生成式将次数用二进制表示
n_b = list(int(i) for i in bin(int(n))[2:])
# 二进制数逆转
n_b.reverse()
# results_list[i]表示 x^(2^i) mod p 的值,就是x的2的i次方的值
results_list = [x]
# result_list = [] 为z^n mod p 分项的值,就是results_list[i]*n_b[i]
result_list = []
# 对其n的二进制进行遍历 顺便通过 results_list[i+1] = results_list[i]^2 然后添加到列表results_list,再和n_b逐项相乘
for i in range(len(n_b)):
re = (pow(results_list[i],2))%p
results_list.append(re)
result = (result * results_list[i] * n_b[i]) % p if results_list[i] * n_b[i] else result
return result
if __name__ == '__main__':
print(quickMod(7,20000000000,23))