【密码学】【重邮密码学实验】【快速模幂算法】快速模幂算法python实现

废话不多说,自己看注释,原理大家都懂,不懂原理的话先看别的原理教程,此算法次数无限加,时间效率为log2(n)

快速模幂算法具体实现如下(两次循环,比较易懂)

# 快速模幂运算  x:底数  n:次数  p:模数
def quickMod(x,n,p):
    # 令结果为1
    result = 1
    # 列表生成式将次数用二进制表示
    n_b = list(int(i) for i in bin(int(n))[2:])
    # 二进制数逆转
    n_b.reverse()
    # results_list[i]表示 x^(2^i) mod p 的值,就是x的2的i次方的值
    results_list = [x]
    # result_list = [] 为z^n mod p 分项的值,就是results_list[i]*n_b[i]
    result_list = []
    # 对其n的二进制进行遍历 顺便通过 results_list[i+1] = results_list[i]^2 然后添加到列表results_list,再和n_b逐项相乘
    for i in range(len(n_b)):
        re = (pow(results_list[i],2))%p
        results_list.append(re)
        result_list.append(results_list[i]*n_b[i])
    # 这里三行代码用于调试,看不懂的话可以自己删掉注释
    # 打印n的二进制表达式,分别是2^0,2^1...2^x
    #print(n_b)
    # 打印x^(2^i) mod p 的值的列表results_list和z^n mod p的值的列表result_list
    #print(results_list)
    #print(result_list)
    # 将result_list中不为0的值逐项相乘得到result
    for r in result_list:
        if r:
            result = (result*r)%p
    return result


if __name__ == '__main__':
    print(quickMod(7,20000000000,23))

如下算法为上面的改进算法,但是不易看懂,大家可以试着看

# 快速模幂运算  x:底数  n:次数  p:模数
def quickMod(x,n,p):
    # 令结果为1
    result = 1
    # 列表生成式将次数用二进制表示
    n_b = list(int(i) for i in bin(int(n))[2:])
    # 二进制数逆转
    n_b.reverse()
    # results_list[i]表示 x^(2^i) mod p 的值,就是x的2的i次方的值
    results_list = [x]
    # result_list = [] 为z^n mod p 分项的值,就是results_list[i]*n_b[i]
    result_list = []
    # 对其n的二进制进行遍历 顺便通过 results_list[i+1] = results_list[i]^2 然后添加到列表results_list,再和n_b逐项相乘
    for i in range(len(n_b)):
        re = (pow(results_list[i],2))%p
        results_list.append(re)
        result = (result * results_list[i] * n_b[i]) % p if results_list[i] * n_b[i] else result
    return result


if __name__ == '__main__':
    print(quickMod(7,20000000000,23))

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值