背包问题(01,完全,多重,分组)

dp问题一般从两个方面考虑:1.状态表示 2.状态计算

1.01背包

有一个容量为v的背包,有n个物体,每个物体的体积是vi,价值是wi,在背包能装下的情况下找出最大能装多少价值的物品。(每件只有一个)

1.状态表示: f[i][j]这个形式表示的是从前i个物品里选,最大体积不超过j的方法的集合

这个数储存的是这个状态的某种属性:如最大价值,最小价值,在本题是最大价值

2.状态计算:最后求的状态应该是f[n][v]

f[i][j]可以划分为两个状态的集合:一种是不选i,一种是不选i

1.不选i的状态表示是f[i-1][j](从前i-1个物品中选总体积不超过j的所有选择方法的集合的最大价值)

2.选i的状态表示是f[i-1][j-vi]+wi(前i-1个物品中选总体积不超过j-vi(给i留个体积确保他能装进去)的状态的最大价值最后再加上i的价值wi就说明最后的最大价值里一定选了i)。但是这个状态有一个条件,那就是j>=vi,意思是他要求最大不超过的体积一定要比i的体积大才能选i,不然就装不了i

我们要求最大值,这两个状态加起来就是总情况,且两个状态求的都是最大值,所以两个状态取max就是所求f[i][j]的值,即

f[i][j]=max (f[i-1][j] , f[i-1][j-vi]+ wi)

最朴素的二维代码是

#include<iostream>
#include<algorithm>
#include<cstring>
using namespace std;
int n,m;
int v[1100],w[1100];
int f[1100][1110];
int main(){
	scanf("%d%d",&n,&m);
	for(int i=1;i<=n;i++){
		scanf("%d%d",&v[i],&w[i]);
	}
	for(int i=1;i<=n;i++){//因为i=0时表示的是从前0件物品中选,都是0所以从1开始
		for(int j=0;j<=m;j++){
			f[i][j]=f[i-1][j];//这个状态一定存在
			if(j>=v[i])f[i][j]=max(f[i][j],f[i-1][j-v[i]]+w[i]);//**
		}
	}
	printf("%d",f[n][m]);
	return 0;
}

欧莫,我突然发现//**的地方max里的f[i][j]写成f[i-1][j]也可以,因为他们俩值一样。所以我记的话为了保持一致就全i-1好了

 这个是二维的,计算一般会超时,所以我们来把他进行一个优化,即删掉【i】这一维,当删掉i这一维时,变成了:

for(int i=1;i<=n;i++){
		for(int j=0;j<=m;j++){
			f[j]=f[j];//恒等式,可直接删除,但是删除之后的下面那个式子和原来表达的不一样
			if(j>=v[i])f[j]=max(f[j],f[j-v[i]]+w[i]);//这个式子中的j-v[i]恒小于j,所以在i-1层被算过了,我们要处理这种情况只用把j反转过来就好了,即:j=m,j>=v[i],j--
		}
	}

最终优化的版本是:

#include<iostream>
#include<algorithm>
#include<cstring>
using namespace std;
int f[1100];
int v[1100],w[1100];
int main(){
	int n,m;
	cin>>n>>m;
	for(int i=1;i<=n;i++){
		cin>>v[i]>>w[i];
	}
	for(int i=1;i<=n;i++){
		for(int j=m;j>=v[i];j--){
			f[j]=max(f[j],f[j-v[i]]+w[i]);
		}
	}
	printf("%d",f[m]);
	return 0;
}

2.完全背包问题

题干同01背包,不同的是每件有无数个。

1.状态表示:因为每种有无数个物品,但是背包的能装的体积是有限的,所以他最多能装v/v[i]个i物品,,设他装k个i物品,那么不含i的状态表示就是f[i-1][j],含k个i的状态表示是f[i-1][j-k*v[i]]+k*w[i],很容易发现当k=0时就是f[i-1][j],所以我们可以把他总结成通式:f[i-1][j-k*v[i]]+k*w[i],然后再枚举k从0到v/v[i]即可。

最朴素的代码(但是会t,只是用来理解)

#include<iostream>
#include<algorithm>
#include<cstring>
using namespace std;
int n,m;
int v[1100],w[1100];
int f[1100][1110];
int main(){
	scanf("%d%d",&n,&m);
	for(int i=1;i<=n;i++){
		scanf("%d%d",&v[i],&w[i]);
	}
	for(int i=1;i<=n;i++){//因为i=0时表示的是从前0件物品中选,都是0所以从1开始
		for(int j=0;j<=m;j++){
			for(int k=0;k*v[i]<=j;k++){
				f[i][j]=max(f[i][j],f[i-1][j-k*v[i]]+k*w[i]);
			}
		}
	}
	printf("%d",f[n][m]);
	return 0;
}

 他t的原因是三层循环,所以我们优化的时候考虑删掉一层循环,考虑吧k的那层循环删掉。

我们先看一下f[i][j]包含的状态是什么:

f[i][j]=max(f[i-1][j], f[i-1][j-vi]+w, f[i-1][j-2*vi]+2*w....)

(不含物品i,含一个物品i,含两个物品i....这所有情况集合的最大值)

再看一下f[i][j-vi]包含的状态是什么:

f[i][j-v]=max(f[i-1][j-v] ,f[i-1][j-2*vi]+w ,f[i-1][j-3*vi]+2*w...)

(不含物品i,含一个物品i,含两个物品i....这所有情况集合的最大值)

对比这两个式子:

 可以总结出最后的式子与k无关:

f[i][j]=max(f[i-1][j],f[i][j-vi]+w)

但是f[i][j-vi]+w存在的情况是有条件的:j>=vi

所以完成了优化,代码是

#include<iostream>
#include<algorithm>
#include<cstring>
using namespace std;
int n,m;
int v[1100],w[1100];
int f[1100][1110];
int main(){
	scanf("%d%d",&n,&m);
	for(int i=1;i<=n;i++){
		scanf("%d%d",&v[i],&w[i]);
	}
	for(int i=1;i<=n;i++){//因为i=0时表示的是从前0件物品中选,都是0所以从1开始
		for(int j=0;j<=m;j++){
			f[i][j]=f[i-1][j];
			if(j>=v[i])f[i][j]=max(f[i][j],f[i][j-v[i]]+w[i]);
		}
	}
	printf("%d",f[n][m]);
	return 0;
}

 这里就要对01背包和完全背包来个对比了,两个代码唯一的区别就是01是从i-1层更新的,完全是从i层开始更新的。

我们要进行优化,把他优化成一维的话,因为都是第i层,所以直接把他i那一维删了就可以了。 

for(int i=1;i<=n;i++){
		for(int j=v[i];j<=m;j++){
			f[j]=max(f[j],f[j-v[i]]+w[i]);
		}
	}

多重背包问题:有n个物品,背包容量是m,第i个物品最多有si个,体积是vi,价值是wi,问背包最大价值能装多少。

思路和完全背包差不多,但是不同的是k的范围,完全背包是当k*v[i]<=m时循环,而这个给定了最大数量s[i],所以条件变为k<=s[i]。

#include<iostream>
#include<algorithm>
using namespace std;
int f[105][105];
int s[105];
int v[105];
int w[105];
int n,m;
int main(){
	cin>>n>>m;
	for(int i=1;i<=n;i++){
		cin>>v[i]>>w[i]>>s[i];
	}
	for(int i=1;i<=n;i++){
		for(int j=0;j<=m;j++){
			for(int k=0;k<=s[i]&&k*v[i]<=j;k++){
				f[i][j]=max(f[i][j],f[i-1][j-k*v[i]]+k*w[i]);
			}
		}
	}
	printf("%d",f[n][m]);
	return 0;
}

 但是这样肯定会t,所以我们需要把他优化一下。

优化的方式就是二进制优化,一共有n个,我们可以把他分为1.2.4.8...2^k个一组,然后我们就可以用这么多组拼凑出来n,但是注意我们要保证1+2+4+...+2^k小于等于n,如果大于的话就超过了n,不符合要求,如果小于的话我们求出s=n-(1+2+4+...+2^k),然后就能拿1.2.4...2^k.s,这些数来凑n了,这样按二进制分组之后再做一遍01背包问题就能解决了。

#include<iostream>
#include<algorithm>
using namespace std;
const int N=25000;
int f[N];
int v[N];
int w[N];
int n,m;
int main(){
	cin>>n>>m;
	int cnt=0;
	for(int i=1;i<=n;i++){
		int v1,w1,s1;
		cin>>v1>>w1>>s1;
		int k=1;
		while(k<=s1){
			cnt++;
			v[cnt]=v1*k;
			w[cnt]=w1*k;
			s1-=k;
			k*=2;
		}
		if(s1>0){
			cnt++;
			v[cnt]=s1*v1;
			w[cnt]=s1*w1;
		}
	}
	for(int i=1;i<=cnt;i++){
		for(int j=m;j>=v[i];j--){
			f[j]=max(f[j],f[j-v[i]]+w[i]);
		}
	}
	printf("%d",f[m]);
	return 0;
}

分组背包问题:有n组物品,有一个最大体积为m的背包,每组有si种物品,每种物品的价值是w体积是w,且每组里只能挑一个物品,求最大价值。

将每组的物品当成01背包来做就好了。

.

#include<iostream>
#include<algorithm>
using namespace std;

int f[30000];
int s[105];
int v[105][105];
int w[105][105];
int main(){
	int n,m;
	cin >>n>>m;
	for(int i=1;i<=n;i++){
		cin>>s[i];//输入每组的个数
		for(int j=0;j<s[i];j++){//在各组的编号
			cin>>v[i][j]>>w[i][j];
		}
	}
	for(int i=1;i<=n;i++){
		for(int j=m;j>=0;j--){//01背包模型,只能选一个
			for(int k=0;k<s[i];k++){//在每组的编号
				if(v[i][k]<=j){//当能装下才能更新
					f[j]=max(f[j],f[j-v[i][k]]+w[i][k]);
				}
			}
		}
	}
	printf("%d",f[m]);
	return 0;
}

还有一些问题是问你装满背包的话最大价值是多少,如果不能装满输出no的那种,我们就把f全都赋值成负无穷。f[0]=0,然后剩下代码和上面一样,如果fm输出的是负无穷的话就表示不能把fn装满,直接输出no。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值