题意:给你一串全部由0或1组成的字符串,你可以删除前面连续的任意长度的字符,再删除后面连续的任意长度的字符,可以删完,操作的成本是删除的1和剩下字符的0的个数取最大值,问最小的成本。
思路:设剩下的子串的左端点为l右端点为r,用sum数组来表示前缀和,那么子串的1的个数就是sum[r]-sum[l-1],子串的0的个数就是r-l+1-(sum[r]-sum[l]),删除的1的个数就是sum[n]-(sum[r]-sum[l]),这两个值取最大。
后半部分都一样,所以我们看前半部分:
当sum[n]>=r-l+1时,我们取sum[n]-(sum[r]-sum[l]),要想使这个值尽可能小,sum[n]是固定的值,那就使(sum[r]-sum[l])大,这个表示的是子串里1的个数,如果要使他大,那么子串的长度尽可能大,前提条件是sum[n]>=r-l+1,所以长度最大就是等于sum[n]的情况。
当sum[n]<r-l+1时,我们取r-l+1-(sum[r]-sum[l]),这次从整体来看,如果要使他尽可能小,我们就让他的长度尽可能小,但是前提条件是sum[n]<r-l+1,所以长度最小是sum[n]+1。
综上情况,先列举子串的最左边的字符的下标从1开始长度为sum[n]的子串,求sum[n]-(sum[r]-sum[l])的最小值,再列举子串的最左边的字符的下标从1开始长度为sum[n]+1的子串,求r-l+1-(sum[r]-sum[l])的最小值,综合一下取最小就是我们所求的答案。
#include<iostream>
#include<algorithm>
#include<cstring>
#include<cmath>
using namespace std;
typedef long long ll;
const int N=200005;
int sum[N];
void sove(){
string s;
cin>>s;
int n=s.size();
s=" "+s;
for(int i=1;i<=n;i++){
sum[i]=sum[i-1]+(s[i]-'0');
}
int len=sum[n];
int ans=0x3f3f3f3f;
for(int i=1;i+len-1<=n;i++){
ans=min(ans,len-(sum[i+len-1]-sum[i-1]));
}
for(int i=1;i+len<=n;i++){
ans=min(ans,len+1-(sum[i+len]-sum[i-1]));
}
cout<<ans<<endl;
}
int main(){
ios::sync_with_stdio(false);
cin.tie() ,cout.tie() ;
int t;
cin>>t;
while(t--){
sove();
}
return 0;
}