SE-Net:CVPR残差网络(resnet)经典改进深入解析——Split-Attention Networks。


一、介绍

Squeeze-and-Excitation Networks (SE-Net) 由 2017 年华为 Noah’s Ark 实验室 提出,并在 CVPR 2018 论文 "Squeeze-and-Excitation Networks" 中详细介绍。它是一种 注意力机制 (Attention Mechanism),专注于通道注意力 (Channel Attention),提升卷积神经网络的特征表示能力。

论文地址:Squeeze-and-Excitation Networks

成就:在2017年最后一届ImageNet挑战赛(ILSVRC) classification 任务中获得冠军,将错误率降低到 2.251% ;

核心思想

SE 模块 (Squeeze-and-Excitation Block) 可以 自适应地为每个通道分配不同的权重,让网络关注更重要的特征,并抑制无用信息,提高模型的准确率。

基础工作:hyshhh:何恺明ResNet(残差网络)——彻底改变深度神经网络的训练方式

相关工作:hyshhh:李沐ResNest:残差网络(resnet)经典改进深入解析——Split-Attention Networks。


二、 SE-Net 的工作原理

下面两个图中,左图是正常网络中的SE-block,右图是在残差网络中的SE-block。主干部分相同,在残差网络的骨干模块增加了一个直接映射的通道。下面介绍SE模块的工作原理

SE 模块分为 三个阶段

  1. Squeeze (特征压缩)
    使用 全局平均池化 (Global Average Pooling, GAP),将每个通道的 空间信息压缩,得到全局感受野,生成通道级别的全局特征向量。下图是全局池化压缩的公式,对一个通道上特征图的所有像素上的所有点进行加权求和,然后初H*W也就是特征图的面积,得到所有像素点的均值。

2. Excitation (特征重标定)
通过 两层全连接网络 (FC Layers) 学习每个通道的 重要性权重
先 降维(降低计算量),然后 升维(恢复通道数)。
使用 ReLU 作为激活函数,并用 Sigmoid 归一化,确保权重在 [0,1] 之间。

上述计算注意力权重的公式如下所示:

ReLU 激活函数 (δ):ReLU(修正线性单元)激活函数在网络中用于引入非线性,使得模型能够学习更复杂的模式。W1表示第一个全连接层的权重矩阵,它将输入的通道数 映射到一个较小的通道数​。W2表示第二个全连接层的权重矩阵,它将经过降维后的通道数恢复到原始的通道数 。

最后,输出通过激活函数进行重缩放,得到注意力权重值

3. Recalibration (通道重标定)
通过 乘法操作 重新加权通道:output=input×channel attention 让重要的通道增强,不重要的通道衰减。论文中公式

三、SE Block

将以上Block构成的网络如下 :其原理与resnet相同,相较于resnet有了一定提升

 

5. 文章推荐

https://zhuanlan.zhihu.com/p/1890066229575803821

【论文】ICCV2017——Soft-NMS一种NMS(非极大值抑制)的改进方法 - hyshhh的文章 - 知乎
https://zhuanlan.zhihu.com/p/1889437367116464366

【qzzh感知算法岗面试】NMS——YOLO网络中的NMS(非极大值抑制)算法作用原理 - hyshhh的文章 - 知乎
https://zhuanlan.zhihu.com/p/1889176080797136055

Pointpillar(Openpcdet)代码解读——检测头部分 - hyshhh的文章 - 知乎
https://zhuanlan.zhihu.com/p/1888699744127258715

KITTI数据集介绍、组成结构、可视化方法 - hyshhh的文章 - 知乎
https://zhuanlan.zhihu.com/p/32087711026

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值