654. 最大二叉树
和昨天的根据前序、中序构建二叉树思路一样
class Solution {
public:
TreeNode* traversal(vector<int>& nums, int begin, int end){
if (begin >= end) return nullptr;
//分割点下标
//不能像下方代码那样定义,因为下方代码要找的值的下标是确定的
//而此段代码找最大值的下标是不止何时才是最大值,所有要不断记录下标,不像下方可以break
int index = begin;
for (int i = index + 1; i < end; i++){
if (nums[i] > nums[index]){
index = i;
}
}
/*
int index;
for (index = inorderBegin; index < inorderEnd; index++){
if (inorder[index] == rootVal) break;
}
*/
TreeNode* root = new TreeNode(nums[index]);
root->left = traversal(nums, begin, index);
root->right = traversal(nums, index + 1, end);
return root;
}
TreeNode* constructMaximumBinaryTree(vector<int>& nums) {
return traversal(nums, 0, nums.size());
}
};
617. 合并二叉树
递归法
class Solution {
public:
TreeNode* mergeTrees(TreeNode* root1, TreeNode* root2) {
//二者都为空
if (root1 == NULL && root2 == NULL) return NULL;
//root1为空,返回root2
if (root1 == NULL && root2 != NULL) return root2;
//root2为空,返回root1
if (root1 != NULL && root2 == NULL) return root1;
TreeNode* root = new TreeNode(0);
root->val = root1->val + root2->val;
root->left = mergeTrees(root1->left, root2->left);
root->right = mergeTrees(root1->right, root2->right);
return root;
}
};
迭代法
在t1上操作,最后返回t1
class Solution {
public:
TreeNode* mergeTrees(TreeNode* t1, TreeNode* t2) {
if (t1 == NULL) return t2;
if (t2 == NULL) return t1;
queue<TreeNode*> que;
que.push(t1);
que.push(t2);
while(!que.empty()) {
TreeNode* node1 = que.front(); que.pop();
TreeNode* node2 = que.front(); que.pop();
// 此时两个节点一定不为空,val相加
node1->val += node2->val;
// 如果两棵树左节点都不为空,加入队列
if (node1->left != NULL && node2->left != NULL) {
que.push(node1->left);
que.push(node2->left);
}
// 如果两棵树右节点都不为空,加入队列
if (node1->right != NULL && node2->right != NULL) {
que.push(node1->right);
que.push(node2->right);
}
// 当t1的左节点 为空 t2左节点不为空,就赋值过去
if (node1->left == NULL && node2->left != NULL) {
node1->left = node2->left;
}
// 当t1的右节点 为空 t2右节点不为空,就赋值过去
if (node1->right == NULL && node2->right != NULL) {
node1->right = node2->right;
}
}
return t1;
}
};
700. 二叉搜索树中的搜索
递归法
class Solution {
public:
TreeNode* searchBST(TreeNode* root, int val) {
if (root == NULL || root->val == val) return root;
TreeNode* result = NULL;
if (root->val > val) result = searchBST(root->left, val);
if (root->val < val) result = searchBST(root->right, val);
return result;
}
};
注:当时写第一遍的时候习惯直接写 searchBST(root->left, val)
,却忘了 递归函数还有返回值。
递归函数的返回值是什么? 是 左子树如果搜索到了val,要将该节点返回。 如果不用一个变量将其接住,那么返回值不就没了。
所以要 result = searchBST(root->left, val)
。
迭代法
class Solution {
public:
TreeNode* searchBST(TreeNode* root, int val) {
while (root != NULL) {
if (root->val > val) root = root->left;
else if (root->val < val) root = root->right;
else return root;
}
return NULL;
}
};
98. 验证二叉搜索树
中序遍历
利用二叉搜索树的特性:中序遍历序列是有序的
class Solution {
public:
vector<int> vec;
void traversal(TreeNode* root){
if (root == NULL) return;
traversal(root->left);
vec.push_back(root->val);
traversal(root->right);
}
bool isValidBST(TreeNode* root) {
traversal(root);
for (int i = 1; i < vec.size(); i++){
if (vec[i] <= vec[i - 1]) return false;
}
return true;
}
};
递归法
class Solution {
public:
bool helper(TreeNode* root, long long lower, long long upper) {
if (root == nullptr) {
return true;
}
if (root -> val <= lower || root -> val >= upper) {
return false;
}
return helper(root -> left, lower, root -> val) && helper(root -> right, root -> val, upper);
}
bool isValidBST(TreeNode* root) {
return helper(root, LONG_MIN, LONG_MAX);
}
};