1.数据来源:西安交通大学轴承数据集,本文选择最早期数据进行故障诊断方法验证
2.采用方法:连续变分模态分解(SVMD)
智能优化算法(SCSSA)
最大相关峭度解卷积(MCKD)
3.技术流程:首先利用SVMD方法将信号分解为一系列本征模态分量(IMF);其次,使用峭度-相关系数联合指标选取有效模态分量IMF,并进行重构;然后,使用智能优化算法SCSSA,并以包络谱峰值因子为适应度函数,实现MCKD参数自适应选择;最后,对最终信号进行包络解调,得到故障信息。
4.参考文献:
[1]Mojtaba N ,Mahmoud S S .Successive Variational Mode Decomposition[J].Signal Processing,2020,174(prepublish):
[2]李爱莲,全凌翔,崔桂梅,等.融合正余弦和柯西变异的麻雀搜索算法[J].计算机工程与应用,2022,58(03):91-99.
[3]费红博,张超,吴乐,等.基于VMD-MCKD的微弱故障信号降噪及冲击特征增强方法[J].机电工程,2025,42(02):237-246.
[4]唐贵基,曾鹏飞,朱爽.基于ASMVMD和MOMEDA的齿轮特征提取方法[J].机电工程,2024,41(12):2174-2184.
另外包括西安交通大学轴承数据集源文献