本小白在学习线段树之前,先进行了ST表的学习,这个可以作为线段树的前置操作来学习
理解ST表的前置知识
可重复贡献问题
可重复贡献问题 是指对于运算 o p t opt opt,满足 x o p t x = x x\ opt\ x=x x opt x=x,则对应的区间询问就是一个可重复贡献问题。例如,最大值有 m a x ( x , x ) = x max(x,x)=x max(x,x)=x, g c d gcd gcd 有 g c d ( x , x ) = x gcd(x,x) = x gcd(x,x)=x,所以 R M Q RMQ RMQ 和区间 g c d gcd gcd就是一个可重复贡献问题。像区间和就不具有这个性质,如果求区间和的时候采用的预处理区间重叠了,则会导致重叠部分被计算两次,这是我们所不愿意看到的。另外, o p t opt opt 还必须满足结合律才能使用 ST 表求解。
以上这段来自于 o i − w i k i oi-wiki oi−wiki 对于可重复贡献问题的讲解,接下来说说 我的理解:
其实可重复贡献问题的意思就是,对于每一个你取到的元素来说,多次进行 o p t opt opt 运算并不影响最终的答案,举个例子,对于 a r r [ 5 ] = [ 1 , 2 , 3 , 4 , 5 ] arr[5]=[1,2,3,4,5] arr[5]=[1,2,3,4,5] 这个数组来说,如果我们要求这个数组的最大值,即便我在运算中多算了几次 a r r [ 1 ] arr[1] arr[1],都是不会影响到我最终的结果是 5 5 5 的,反之,如果我要算这个数组的前缀和,在计算以 a r r [ 2 ] arr[2] arr[2] 为区间末尾的前缀和时,如果多加了几次 a r r [ 1 ] arr[1] arr[1] 那么最终的答案将会出现错误。由此看来,区间最大值就是一个可重复贡献问题,而区间和就不是。
(好理解点了吗?)
倍增
(这个是本算法的实现原理,如果想直接使用可以直接看正文啦)
什么是倍增?
顾名思义,也就是不停地翻倍。它能够使线性的处理转化为对数级的处理,大大地优化时间复杂度。
举个例子也许就明白啦:
如何用尽可能少的砝码称量出 [ 0 , 1048575 ] [0,1048575] [0,1048575] 之间的所有重量?(只能在天平的一端放砝码)
答案其实很简单,就是选择重量为 1 , 2 , 4 , 8 , . . . , 2 19 1,2,4,8,...,2^{19} 1,2,4,8,...,219 的砝码即可,从 1048575 1048575 1048575 变成了 20 20 20 ,有没有体会到倍增的作用呢。
而且即便我们将重量翻倍增加,我们也只需要多加一个砝码,这是「对数级」的增长速度,因为砝码的个数和 l o g 2 ( w e i g h t ) log_2(weight) log2(weight) 成正比
倍增的应用
这里我们不多说,说个最常用的吧(毕竟不是主要讲倍增):快速幂
我们要求出 a n a^n an 这样的问题,这里的 n n n 很可能是一个非常大的数字,如果我们使用如下代码:
int qpow(int a, int n){
int ans = 1;
while(n--){
ans *= a;
}
return ans;
}
不用怀疑的是,确实能做,但是复杂度是 O ( n ) O(n) O(n) 级别的,并非最优解,而快速幂的目的是达到 O ( l o g n ) O(log\ n) O(log n),从而给你的其他算法空出一些时间来。
快速幂做法很好懂: a n = ( a n / 2 ) 2 ∗ a n % 2 a^n = (a^{n/2})^2*a^{n\%2} an=(an/2)2∗an%2 ,通过不断地将 n / 2 n/2 n/2 ,我们把 n n n 的规模降低为之前的一半,最终到 n n n 为0或1的情况单独讨论,那么我们就得到了递归版本的快速幂:
int qpow(int a, int n)
{
if (n == 0)
return 1;
else if (n % 2 == 1)
return qpow(a, n - 1) * a;
else //降低规模,开始递归 qpow(a,n/2)
{
int temp = qpow(a, n / 2);
return temp * temp;
}
}
结束了前置知识以后,我们就开始ST表的学习
什么是ST表?
ST表(Sparse Table),也就是稀疏表,是一种用来解决可重复贡献问题的数据结构,主要用来解决 ** R M Q RMQ RMQ (区间最大值/最小值查询)**问题,应用了倍增的思想,让其能够做到 O ( n l o g n ) O(n\ log\ n) O(n log n) 预处理,O(1) 来查询每个区间。
优点:查询速度比线段树都快
缺点:无法修改,根本改不了一点
ST表使用一个二维数组 f [ i ] [ j ] f[i][j] f[i][j] 来表示区间 [ i , i + 2 j − 1 ] [i,\ i+2^j-1] [i, i+2j−1] 的询问答案,以下我们将以区间最大值来举例。
预处理
起始点是
f
[
i
]
[
0
]
=
a
i
f[i][0]=a_i
f[i][0]=ai ,根据我们的定义,第二维就相当于倍增的时候走了
2
j
−
1
2^j-1
2j−1 步,那么就可以根据倍增的思路来写状态转移方程:
f
[
i
]
[
j
]
=
m
a
x
(
f
[
i
]
[
j
−
1
]
,
f
[
i
+
2
j
−
1
]
[
j
−
1
]
)
f[i][j]=max(f[i][j-1],f[i+2^{j-1}][j-1])
f[i][j]=max(f[i][j−1],f[i+2j−1][j−1]) ,理解不了的可以看一下图,
f
[
i
]
[
j
−
1
]
f[i][j-1]
f[i][j−1] 就是从
i
i
i 开始走
2
j
−
1
−
1
2^{j-1}-1
2j−1−1 步,那么后半段就是从
i
+
2
j
−
1
i+2^{j-1}
i+2j−1 开始,到
i
+
2
j
−
1
i+2^j-1
i+2j−1 结束
查询
查询的时候,我们要找到两个 [ l , r ] [l,r] [l,r] 的子区间,由于之前说过是可重复贡献问题,因此这两个子区间哪怕重叠也没有关系,只要两个子区间的并集是 [ l , r ] [l,r] [l,r] ,我们就能够得到正确的结果
那么,为了避免选择错误的麻烦,我们直接让前一个子区间的右端点尽可能靠近 r r r ,后一个子区间的左端点尽可能靠近 l l l,那么当 l + 2 s − 1 = r l+2^s-1=r l+2s−1=r 或 r − 2 s + 1 = l r-2^s+1=l r−2s+1=l 时,我们能得到 s = l o g 2 ( r − l + 1 ) s=log_2(r-l+1) s=log2(r−l+1) ,但我们知道 s s s 为整数,因此 s = ⌊ l o g 2 ( r − l + 1 ) ⌋ s=\lfloor log_2(r-l+1)\rfloor s=⌊log2(r−l+1)⌋
小tips:因为这里的 l o g log log 其实还是比较花时间的,因此我们也可以提前进行预处理 l o g log log
废话不再多说了,进入show code环节
模板(洛谷P3865)
题目背景
这是一道 ST 表经典题——静态区间最大值
请注意最大数据时限只有 0.8s,数据强度不低,请务必保证你的每次查询复杂度为 O ( 1 ) O(1) O(1)。若使用更高时间复杂度算法不保证能通过。
如果您认为您的代码时间复杂度正确但是 TLE,可以尝试使用快速读入:
inline int read()
{
int x=0,f=1;char ch=getchar();
while (ch<'0'||ch>'9'){if (ch=='-') f=-1;ch=getchar();}
while (ch>='0'&&ch<='9'){x=x*10+ch-48;ch=getchar();}
return x*f;
}
函数返回值为读入的第一个整数。
快速读入作用仅为加快读入,并非强制使用。
题目描述
给定一个长度为 N N N 的数列,和 $ M $ 次询问,求出每一次询问的区间内数字的最大值。
输入格式
第一行包含两个整数 N , M N,M N,M,分别表示数列的长度和询问的个数。
第二行包含 N N N 个整数(记为 a i a_i ai),依次表示数列的第 i i i 项。
接下来 M M M 行,每行包含两个整数 l i , r i l_i,r_i li,ri,表示查询的区间为 [ l i , r i ] [l_i,r_i] [li,ri]。
输出格式
输出包含 M M M 行,每行一个整数,依次表示每一次询问的结果。
样例 #1
样例输入 #1
8 8
9 3 1 7 5 6 0 8
1 6
1 5
2 7
2 6
1 8
4 8
3 7
1 8
样例输出 #1
9
9
7
7
9
8
7
9
提示
对于 30 % 30\% 30% 的数据,满足 1 ≤ N , M ≤ 10 1\le N,M\le 10 1≤N,M≤10。
对于 70 % 70\% 70% 的数据,满足 1 ≤ N , M ≤ 10 5 1\le N,M\le {10}^5 1≤N,M≤105。
对于 100 % 100\% 100% 的数据,满足 1 ≤ N ≤ 10 5 1\le N\le {10}^5 1≤N≤105, 1 ≤ M ≤ 2 × 10 6 1\le M\le 2\times{10}^6 1≤M≤2×106, a i ∈ [ 0 , 10 9 ] a_i\in[0,{10}^9] ai∈[0,109], 1 ≤ l i ≤ r i ≤ N 1\le l_i\le r_i\le N 1≤li≤ri≤N。
AC代码:
#include<iostream>
#include<cmath>
#include<stdio.h>
using namespace std;
int f[100005][30];
int a[100005];
int main(){
int n,m;
scanf("%d %d",&n,&m);
// 输入每一个原数据,也就是f[i][0]
for(int i=1;i<=n;i++){
scanf("%d", &f[i][0]);
}
// 动态规划处理
for(int j=1;j<=log2(m)+1;j++){
for(int i=1;i+(1<<j)-1<=n;i++){
f[i][j]=max(f[i][j-1],f[i+(1<<(j-1))][j-1]);
}
}
// 查询开始
int l,r;
for(int i=0;i<m;i++){
scanf("%d %d", &l, &r);
int s = log2(r-l+1); //找到s=log2(r-l+1) ,自动向下取整
// cout<<s<<" "<<f[l][s]<<" "<<f[r-(1<<s)+1][s]<<endl;
printf("%d\n", max(f[l][s], f[r - (1 << s) + 1][s])); //查询
}
return 0;
}
以下是我自己随手的模板(鄙人更喜欢cin)
#include<iostream>
#include<cmath>
using namespace std;
int f[10005][30];
int a[10005];
int main(){
int n,m;
cin>>n>>m;
// 输入每一个原数据,也就是f[i][0]
for(int i=1;i<=n;i++){
cin>>f[i][0];
}
// 动态规划处理
for(int j=1;j<=log2(m)+1;j++){
for(int i=1;i+(1<<j)-1<=n;i++){
f[i][j]=max(f[i][j-1],f[i+(1<<(j-1))][j-1]);
}
}
// 查询开始
int l,r;
for(int i=0;i<m;i++){
cin>>l>>r;
int s = log2(r-l+1); //找到s=log2(r-l+1) ,自动向下取整
// cout<<s<<" "<<f[l][s]<<" "<<f[r-(1<<s)+1][s]<<endl;
cout<<max(f[l][s],f[r-(1<<s)+1][s])<<endl; //查询
}
return 0;
}
这是本算法小白对于ST表的理解,如有错误望各位指正,多谢!꒰ᐢ⸝⸝•༝•⸝⸝ᐢ꒱