速了解及使用布隆过滤器

布隆过滤器

介绍

概念:是一种高效查询的数据结构

作用:判断某个元素是否在一个集合中。(但是会出现误判的情况)

实现原理

  1. 加入元素

  • 当一个元素需要加入到布隆过滤器中时,会使用一组哈希函数对该元素进行计算,得到多个哈希值。

  • 每个哈希值对应到位数组的一个特定位置,将这些位置的值设置为1。

  1. 查询元素

  • 对给定的元素再次进行相同的哈希计算,得到一组哈希值。

  • 检查位数组中对应的每个位置是否都为1。如果所有位置都是1,那么认为这个元素可能在布隆过滤器中;如果有任何一个位置不为1,那么可以确定该元素不在布隆过滤器中。

误判和不可删除

下面是一个插入元素的图:

image-20240511213606519

模拟插入:

  1. 先插入“你好”

    1. 计算“你好”的hash值

    2. 插入到2的位置

  2. 插入“hello”

    1. 计算“hello”的hash值

    2. 插入到2的位置

  • 误判:如果计算出“hello”和“你好”的hash值是一样的,这个时候就会出现误判的情况。

  • 不能删除:当发现“你好”和“hello”的值都在2位置,如果要删除“你好”的hash值在布隆过滤器中,那么“hello”也会同时被删除。

使用场景

使用在缓存穿透场景。

可以利用布隆过滤器先看看数据是否存在,再进行下一步的判断,可能可以减少很多次的数据库访问请求。

if(!bloomFilter.contains(data)){
    //.....
}

一般采用上述这种方式进行布隆过滤器的判断。

原因:布隆过滤器可能存在误判

  • 当布隆过滤器中不存在一个数据的时候,那么这个数据肯定不存在。

  • 当布隆过滤器存在一个数据的时候,可能这个数据还是存在的。

补充缓存穿透:

前端请求要查询一个数据,但是Redis中没有这个数据,所以要将请求打到数据库中。如果是大量请求情况,这个大的流量,可能导致数据库直接挂了。(一般可以采用布隆过滤器+分布式锁防止缓存穿透)

布隆过滤器使用

  • Guava的布隆过滤器

  • Redis实现的布隆过滤器

这里以Redis的布隆过滤器作示例:

1、引入依赖

<dependency>
    <groupId>org.springframework.boot</groupId>
    <artifactId>spring-boot-starter-data-redis</artifactId>
</dependency>
​
<dependency>
    <groupId>org.redisson</groupId>
    <artifactId>redisson-spring-boot-starter</artifactId>
</dependency>

2、配置Redis参数

spring:
  data:
    redis:
      host: 127.0.0.1
      port: 6379
#      password: 123456     #密码

3、布隆过滤器的配置类:

import org.redisson.api.RBloomFilter;
import org.redisson.api.RedissonClient;
import org.springframework.boot.context.properties.EnableConfigurationProperties;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
​
/**
 * 布隆过滤器配置
 */
@Configuration
public class RBloomFilterConfiguration {
​
​
    @Bean
    public RBloomFilter<String> userRegisterCachePenetrationBloomFilter(RedissonClient redissonClient) {
        RBloomFilter<String> cachePenetrationBloomFilter = redissonClient.getBloomFilter("xxx");
        cachePenetrationBloomFilter.tryInit(0, 0);
        return cachePenetrationBloomFilter;
    }
}

tryInit 有两个核心参数:

  • expectedInsertions:预估布隆过滤器存储的元素长度。

  • falseProbability:运行的误判率

这里是一个计算误判率和大小的网站:Bloom Filter Calculator

4、代码中的使用

private final RBloomFilter<String> userRegisterCachePenetrationBloomFilter;
  • add方法添加

  • contains方法判断是否存在

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值