【数据结构与算法】斐波那契查找(黄金分割法)

斐波那契查找是一种优化的搜索算法,它利用斐波那契数列的特性调整二分查找中的中间点,提高查找效率。在顺序表中,通过将表长度调整至斐波那契数并进行分割,可以更高效地定位目标值。当顺序表长度不匹配斐波那契数时,通过填充确保长度。算法通过比较目标值与斐波那契分割点决定搜索方向,直至找到目标或确定不存在。
摘要由CSDN通过智能技术生成

斐波那契查找(黄金分割法)

黄金分割点是指把一条线段分割成两部分,使其中一部分与全长之比等于另一部分与这部分之比。取其前三位数字的近似值是 0.618。由于按此比例设计的造型十分美丽,因此称为黄金分割,也称为中外比。这是一个神奇的数字,会带来意想不到的效果。

斐波那契数列 {1,1,2,3,5,8,13,21,34,55} 发现斐波那契数列的两个相邻数的比例,无限接近于黄金分割值 0.618。

斐波那契(黄金分割法)原理

斐波那契查找原理与二分查找和插值查找相似,仅仅改变了中间结点(mid)的位置,mid 不再是中间或者插值得到,而是位于黄金分割点附近,即 mid = lift + F(k - 1) - 1 (F代表斐波那契数列)

在这里插入图片描述

对 F(k - 1) - 1 的理解:

  1. 由斐波那契数列 F[k] = F[k - 1] + F[k - 2] 的性质,可以看到 (F[k] - 1) = (F[k - 1] - 1) + (F[k - 2] - 1) + 1。该式说明:只要顺序表的长度为 F[k] - 1,则可以将该表分成长度为 F[k - 1] - 1 和 F[k - 2] - 1 的两段,即如上图所示。从中间的位置为 mid = lift + F(k - 1) - 1
  2. 类似的,每一子段也可以用相同的方式分割
  3. 但顺序表长度 n 不一定刚好等于 F[k] - 1,所以需要将原来的顺序表长度 n 增加至 F[k] - 1。这里的 k 值只要能使得 F[k] - 1 恰好大于或等于 n 即可,由以下代码得到,顺序表长度增加后,新增的位置(从 n + 1 到 F[k] - 1 位置),都赋为 n 位置的值即可。
while(n > fib(k) - 1) {
    k++;
}

代码演示:

public class FibonacciSearch {
    public static int maxSize = 20;

    public static void main(String[] args) {
        int[] arr = {1, 8, 10, 89, 1000, 1234};

        System.out.println("index = " + fibSearch(arr, 89));
    }

    // 因为后面我们 mid = low + F(k - 1) - 1,需要使用斐波那契数列,因此我们需要获得一个斐波那契数列
    // 非递归方法得到一个斐波那契数列
    public static int[] fib() {
        int[] f = new int[maxSize];
        f[0] = 1;
        f[1] = 1;
        for (int i = 2; i < maxSize; i++) {
            f[i] = f[i - 1] + f[i - 2];
        }
        return f;
    }

    /**
     * 编写斐波那契查找算法
     * 使用非递归的方式编写算法
     *
     * @param a   数组
     * @param key 我们需要查找的关键码(值)
     * @return 返回对应下标,如果没有返回 -1
     */
    public static int fibSearch(int[] a, int key) {
        int low = 0;
        int high = a.length - 1;
        int k = 0; // 表示斐波那契分割数值的下标
        int mid = 0; // 存放 mid 值
        int[] f = fib(); // 获取斐波那契数组
        // 获取到斐波那契分割数值的下标
        while (high > f[k] - 1) {
            k++;
        }
        // 因为 f[k] 值可能大于 a 的长度,因此我们需要使用 Arrays 类,构造一个新的数组,并指向 a[]
        // 不足的部分会使用 0 填充
        int[] temp = Arrays.copyOf(a, f[k]);
        // 实际上需要使用 a 数组的最后的数填充 temp
        // 举例:temp = {1, 8, 10, 89, 1000, 1234, 0, 0, 0} => {1, 8, 10, 89, 1000, 1234, 1234, 1234, 1234}
        for (int i = high + 1; i < temp.length; i++) {
            temp[i] = a[high];
        }
        // 使用 while 循环处理,找到我们的数 key
        while (low <= high) { // 只要这个条件满足,就可以找
            mid = low + f[k - 1] - 1;
            if (key < temp[mid]) { // 我们应该继续向数组的前面查找(左边)
                high = mid - 1;
                // 为什么是 k--;
                // 说明
                // 1. 全部元素 = 前面的元素 + 后面的元素
                // 2. f[k] = f[k - 1] + f[k - 2]
                // 3. 因为前面有 f[k - 1] 个元素,所以乐意继续拆分 f[k - 1] = f[k - 2] + f[k - 3]
                // 4. 即 在 f[k - 1] 的前面继续查找 k--
                // 5. 即下次循环 mid = f[k - 1 - 1] - 1
                k--;
            } else if (key > temp[mid]) { // 我们应该继续向数组的后面查找(右边)
                low = mid + 1;
                // 为什么是 k -= 2;
                // 说明
                // 1. 全部元素 = 前面的元素 + 后面的元素
                // 2. f[k] = f[k - 1] + f[k - 2]
                // 3. 因为后面有 f[k - 2] 个元素,所以乐意继续拆分 f[k - 1] = f[k - 3] + f[k - 4]
                // 4. 即 在 f[k - 2] 的前面继续查找 k-= 2
                // 5. 即下次循环 mid = f[k - 1 - 2] - 1
                k -= 2;
            } else { // 找到
                // 需要确定返回的是哪个下标
                if (mid <= high) {
                    return mid;
                } else {
                    return high;
                }
            }
        }
        return -1;
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

superLango

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值