- 博客(288)
- 收藏
- 关注
原创 2025:从理论到Agent实战——我的AI深度探索与创作之旅
2025年,从探索者到开发者的这段过程,我过得很充实,从技术到架构思维,再到生活。每天想的一件事应该就是“如何优化?”,这件事也成为了我目前的一个目标。每天都有新模型、新框架、新概念涌现。从LangChain到LangGraph,从单Agent到多Agent系统,从API调用到底层微调,MCP、DEEPAgent...技术的更新和时间一样快...还没好好感受一下2025就快过了,对于我来说,2025的生活记忆应该是一片空白,往年的相册上百,今年的相册到年末了都凑不出“九宫图。
2025-12-28 22:10:45
978
原创 【AI应用开发设计指南】基于163邮箱SMTP服务实现验证登录
在开发我的法律智能管理助手时,我遇到了一个经典问题:如何为用户提供安全、便捷且成本可控的注册登录方式?短信验证码需要企业资质,第三方OAuth又过于复杂。最终,我选择了国内邮箱验证这条路径——利用最常见、最易得的个人邮箱(如163网易邮箱),通过SMTP协议发送验证码,完美解决了身份验证需求。本文将完整记录从原理认知、环境准备、代码实现到集成到LangGraph智能体架构的全过程。无论你是独立开发者还是小团队,这套方案都能让你在半天内为应用接入稳定的邮箱登录功能。总之只要开启了“
2025-12-20 21:17:09
953
原创 【AI应用开发设计指南】联网搜索功能——搜索引擎推荐
追求快速验证想法:如果目标是用DeepSeek快速做一个能联网的Demo或内部工具,首选腾讯云平台。它能让你在几分钟内就搭出一个联网应用,免去了自己组合、调试API的麻烦。需要高灵活性与全球信息:如果你的应用场景多样,或需要全球、多语言信息,应该选择通用网页搜索API。可以从微软的或国内的博查API(侧重中文)入手,它们都有相对完善的文档和开发者计划。构建复杂AI助手:如果目标是开发需要深度思考、自主规划查询步骤的AI智能体,那么Tavily或Exa.ai这类AI优化API是更专业的选择。
2025-12-16 00:03:49
1517
原创 【git命令操作指南】
复制输出内容,到 GitHub → Settings → SSH and GPG keys → New SSH key→将内容粘贴到“key”,title随便写。一般在团队开发时创建了多个子分支,最终合并到main这个主分支中。以下命令在创建github仓库会有对应的命令,按你创建的仓库所属的对应命令,顺序执行即可。如果LFS解决不了就可以用这个方法,先执行下面命令【1】移除大文件(如果之前有提交的)返回主分支main,如果主分支是master,main就换成master;如:上传pdf改为【
2025-12-05 15:02:19
1068
原创 【windows常见问题】pin不可用,无法登录Windows
电脑重新启动,开机时出现logo时,不停按下“esc”键(不同电脑快捷键会有所不同,参考下图即可)(执行后应看到“已复制 1 个文件”的提示。成功进入桌面后,必须立即恢复我们修改的系统文件,否则会留下安全漏洞。(20634为我的用户名,123456为设置的新秘密)根据向导,验证您的Microsoft账户密码后,将“查看方式”改为“大图标”或“小图标”。(按回车,看到“命令成功完成”的提示)正常重启电脑,等待进入您之前卡住的。您会回到“PIN不可用”的登录界面。点击开始菜单,点击您的头像,选择。
2025-11-11 21:14:34
1514
原创 【机器学习&深度学习】强化学习与监督学习SFT、RL、RLHF、PPO、DPO
方法类比记忆SFT教厨师照菜谱做菜模仿示范RL靠奖励不断试出更好做法试错进步RLHF人类品尝反馈 + 奖励改进让模型符合人类价值PPO防止厨师一次改太多的规则稳定训练方法DPO不用评分、不用试错,直接学偏好更简单便宜的偏好训练RL训练就是让模型不断生成回答 → 得到奖励 → 更新策略 → 输出更优的回答。SFT 教会模型“会回答”,RL(RLHF)教模型“回答得更好、更符合人类偏好”。类型:监督学习训练信号:标准答案(人类示范)目标:让模型学会“会回答”“按示范输出”特点。
2025-11-01 20:40:04
1095
原创 【AI大模型应用宝典60题】6-10
每个注意力头并不只关注一个词元,而是从不同子空间学习多样化的关联模式,一个头可能捕捉语法结构(如主谓一致),另一个头关注关键词匹配,因为在推理时,每一步都要缓存 K/V,如果每个头都要独立缓存,就非常占显存。经过多层 Transformer 的非线性变换后,最终的 token 表示是上下文相关的。,不需要复杂的Transformer结构,也不考虑句子级的上下文动态变化。类比:Q像“问题”,K像“档案关键字”,点积表示“问题与档案匹配度”。)与大模型产生的上下文相关的嵌入相比,有什么区别?
2025-10-23 18:12:36
1027
原创 【AI大模型应用宝典60题】1-5
在回答完三点后,可以做一个更高层次的总结,展示你的视野:“所以,这三种架构的选择本质上是任务需求和计算成本之间的权衡。如果任务纯粹是理解、分析、分类,选编码器,效果最好且高效。如果任务是开放式的生成,或者希望模型非常灵活,选解码器。如果任务需要先深度理解再创造性输出,即典型的‘序列到序列’问题,那么即使成本高,也值得选择编解码器。另外,值得注意的是,随着像GPT-3/4这样超大规模解码器模型的出现,其强大的涌现能力在一定程度上模糊了这种界限,
2025-09-11 17:32:13
907
原创 【数据库】Navicat Premium 17 安装
链接: https://pan.baidu.com/s/1xEBuFmR4LGxcApNDBaSNeQ?
2025-09-07 18:41:48
1130
原创 【机器学习&深度学习】RAG边界处理策略
边界处理主要有2种策略:1、关键次词限定根据定义的关键词来判断用户问的问题是否与模型的知识库领域相关。但是这个方法存在一个比较严重的弊端,如果用户的问题没有包含指定的关键词,却与模型的知识领域相关,会出现问题不匹配的情况;2、判断重排序过滤节点(推荐)直接判断重排序过滤的节点是否为空,如果为空,则表示检索的内容相关性都不强,从而判断为用户问题与模型的知识库领域不相关;
2025-09-03 19:09:20
1122
1
原创 【机器学习&深度学习】LLM:在检索与重排序中的适用场景
▲LLM 可以做 Embedding,但不划算,实际中几乎不用。▲LLM 可以做 Rerank,尤其适合小规模精排(Top-K → LLM)。▲Embedding 模型是轻量高效的主力,负责大规模建库和初筛。
2025-09-03 12:12:55
1047
原创 【机器学习&深度学习】向量检索到重排序:RAG 系统中的优化实践
▲向量检索 提供了高效的初步筛选;▲重排序模型 在 Top-K 候选集中发挥关键作用,让相关文档真正靠前;▲性能与精度权衡:模型越大,精度越高,但延迟也越高,需要结合场景选择合适的 reranker(如 bge-reranker-base 适合在线,bge-reranker-large 适合离线)。
2025-09-02 20:55:10
834
原创 【机器学习&深度学习】向量模型与重排序模型:RAG 的双引擎解析
向量模型 是“广撒网”,帮你找潜在相关文档。重排序模型 是“精挑细选”,帮你从候选里挑出最相关的。
2025-09-02 20:10:10
1820
原创 【机器学习&深度学习】RAG 系统中 Top-k 的最佳实践策略
方法一(相似度分布):适合结果差异大的场景,智能截断。方法二(问题类型):适合业务场景明确,问题模式固定。方法三(rerank):适合高价值场景,要保证答案权威可靠。
2025-09-02 11:49:43
1444
原创 【机器学习&深度学习】Embedding 与 RAG:让 AI 更“聪明”的秘密
▲RAG 结合知识库与大模型,充分发挥 LLM 的语言能力,弥补其在专业知识与时效性上的不足。知识库:提供可靠、实时更新的信息源。大模型:负责理解与生成自然语言回答。▲Embedding 是 RAG 系统的核心技术,它将文本转化为语义向量,连接知识库与大模型。其魔力在于:语义理解:捕捉文本深层含义,实现精准匹配。高效检索:支持快速、动态的知识查询,无需重训模型。广泛应用:从法律到企业文档,Embedding 赋予 RAG 强大的领域适应性。
2025-08-29 20:35:56
1137
原创 【机器学习&深度学习】RAG vs 微调技术取舍:大型语言模型优化的两种路径
AG 适合用来解决动态知识获取与解释性问题,微调适用于固定场景的性能优化。
2025-08-28 12:23:13
1447
html3D动态凯旋门
2025-08-19
【预训练模型】中文白话文文章生成-gpt2-chiese-cluecorpussmall
2025-07-10
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅