题意:
给你两个等长的字符串a,b(全为小写字母)。a中字母的种类最多有十种,现在有一个空的集合Q(set),Q中最多能有K种小写字母,现在你可在a中任意选一个字母 a i a_i ai和一个小写字母c(任何的自己想要的小写字母),将 a i a_i ai加入到Q中,并且用c替换 a i a_i ai。你可以执行这个操作任意次,但是Q.size() <= k,问a,b最多有多少个子区间完全相同。
思路:
由于a中最多有十种字母,我们完全可以二进制枚举出我们替换哪些字母,因为我们可以随便去选择c,然后在来计算出一个最大值就可以了,当得知一段区间的长度并且这一段完全相同,有多少个子区间相同呢,可以采用类似等处数列求和来求,例如现在a,b有一个区间长度为cnt的区间完全相同,那么就会有cnt*(cnt+1)/2个子区间是相同的。这里学到了一个新的函数 __builtin_popcount(i) 这个函数可以求出i的二进制中有多少个1,这样我们就可以直接判断我们每次是否能准确找到替换的满足条件。
代码
#include<bits/stdc++.h>
#define IOS ios::sync_with_stdio(false);cin.tie(nullptr)
#define int long long
#define endl "\n"
using namespace std;
const int N = 3e5 + 10;
int n, m, k, _, d;
char s[N], t[N];
int flag[N];
void solve()
{
cin >> n >> m >> s+1 >> t+1;
set<char> se;
for(int i = 1; i <= n; i ++) se.insert(s[i]);//先求出a的种类
vector<char> a;
for(auto x : se) a.push_back(x);
int g = a.size();
m = min(m, g);//这里要取一个最小值代表我们能替换多少个字母。
int ans = 0;
for(int i = 0; i < 1 << g; i ++)
{
if(__builtin_popcount(i) == m)//能够有m个字母去替换
{
int now = 0;
for(int j = 'a'; j <= 'z'; j ++) flag[j] = 0;
for(int j = 0; j < g; j ++) if(i >> j & 1) flag[a[j]] = 1;//标记我们哪些字母能够去被替代
int cnt = 0;
for(int j = 1; j <= n; j ++)
{
if(s[j] == t[j] || flag[s[j]]) cnt++;//如果当前a和b的字母相等,或者我这个字母能够被替代,那么我们就认为这个字母能变成我们想要的。
else
{
now += cnt*(cnt+1)/2;
cnt = 0;
}
}
now += cnt*(cnt+1)/2;//循环结束过后也要计算一下
ans = max(ans, now);
}
}
cout << ans << endl;
}
signed main()
{
IOS;
cin >> _;
while(_--)
solve();
return 0;
}