题意
给你一个数字n,请你对n!进行质因数分解, n ≤ 1 0 6 n \le 10^6 n≤106
思路
首先我们肯定不能枚举1~n的每一个数然后对当前的这个数进行质因数分解,然后再统计出每个质数出现的个数。这样的时间复杂度是 ( N ∗ N ) (N*\sqrt{N}) (N∗N)这个时间复杂度显然是我们不能够接受的。
所以我们可以尝试换一个思路,如果我们要1~n中有多少个数是p的倍数。那么答案显而易见是 ⌊ n p ⌋ \left \lfloor \frac{n}{p} \right \rfloor ⌊pn⌋。那么根据这个思路我们可以去转换一下,如果对与每一个质数p,1~n中有 ⌊ n p ⌋ \left \lfloor \frac{n}{p} \right \rfloor ⌊pn⌋多个数是p的倍数,那么换句话说n!中对于p这个质因子至少就有 ⌊ n p ⌋ \left \lfloor \frac{n}{p} \right \rfloor ⌊pn⌋这么多个。但是很有可能1~n中会有 p 2 , 2 p 2 . . . , p 3 , 2 ∗ p 3 . . . p^2,2p^2...,p^3,2*p^3... p2,2p2...,p3,2∗p3...这些数。那么对于这些数是不是也都有 ⌊ n p 2 ⌋ \left \lfloor \frac{n}{p^2} \right \rfloor ⌊p2n⌋个 p 2 p^2 p2的质因子。所以我们只需要求出 1 0 6 10^6 106以内的所有质数,然后枚举这些质数,看1~n中对于有多少个数是 p i p^i pi的倍数。那么对于同一种p我们只需要累加起来就是了。
代码
#include<bits/stdc++.h>
#define int long long
#define endl "\n"
#define IOS ios::sync_with_stdio(false);cin.tie(nullptr)
using namespace std;
const int N = 1e6 + 10;
int n, cnt;
int p[N];
bool st[N];
void init()
{
for(int i = 2; i < N; i ++)
{
if(!st[i]) p[cnt++] = i;
for(int j = 0; p[j] * i < N; j ++)
{
st[i*p[j]] = 1;
if(i % p[j] == 0) break;
}
}
}
signed main()
{
IOS;
init();
cin >> n;
map<int, int> mp;
for(int i = 0; p[i] <= n && i < cnt; i ++)
{
int x = p[i];
for(int j = x; j <= n; j *= x) mp[x] += n/j;
}
for(auto it = mp.begin(); it != mp.end(); it ++) cout << it->first << " " << it->second << endl;
return 0;
}