AcWing 197. 阶乘分解

文章目录

题意

给你一个数字n,请你对n!进行质因数分解, n ≤ 1 0 6 n \le 10^6 n106

思路

首先我们肯定不能枚举1~n的每一个数然后对当前的这个数进行质因数分解,然后再统计出每个质数出现的个数。这样的时间复杂度是 ( N ∗ N ) (N*\sqrt{N}) (NN )这个时间复杂度显然是我们不能够接受的。

所以我们可以尝试换一个思路,如果我们要1~n中有多少个数是p的倍数。那么答案显而易见是 ⌊ n p ⌋ \left \lfloor \frac{n}{p} \right \rfloor pn。那么根据这个思路我们可以去转换一下,如果对与每一个质数p,1~n中有 ⌊ n p ⌋ \left \lfloor \frac{n}{p} \right \rfloor pn多个数是p的倍数,那么换句话说n!中对于p这个质因子至少就有 ⌊ n p ⌋ \left \lfloor \frac{n}{p} \right \rfloor pn这么多个。但是很有可能1~n中会有 p 2 , 2 p 2 . . . , p 3 , 2 ∗ p 3 . . . p^2,2p^2...,p^3,2*p^3... p2,2p2...,p3,2p3...这些数。那么对于这些数是不是也都有 ⌊ n p 2 ⌋ \left \lfloor \frac{n}{p^2} \right \rfloor p2n p 2 p^2 p2的质因子。所以我们只需要求出 1 0 6 10^6 106以内的所有质数,然后枚举这些质数,看1~n中对于有多少个数是 p i p^i pi的倍数。那么对于同一种p我们只需要累加起来就是了。

代码

#include<bits/stdc++.h>

#define int long long 
#define endl "\n"
#define IOS ios::sync_with_stdio(false);cin.tie(nullptr)

using namespace std;

const int N = 1e6 + 10;

int n, cnt;
int p[N];
bool st[N];

void init()
{
    for(int i = 2; i < N; i ++)
    {
        if(!st[i]) p[cnt++] = i;

        for(int j = 0; p[j] * i < N; j ++)
        {
            st[i*p[j]] = 1;
            if(i % p[j] == 0) break;
        }
    }
}

signed main()
{
    IOS;
    init();
    cin >> n;
    map<int, int> mp;
    for(int i = 0; p[i] <= n && i < cnt; i ++)
    {
        int x = p[i];
        for(int j = x; j <= n; j *= x) mp[x] += n/j;
    }

    for(auto it = mp.begin(); it != mp.end(); it ++) cout << it->first << " " << it->second << endl;


    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值