牛客 NC17509 挖沟

本文介绍了一种利用Kruskal算法解决军事任务中真人CS地图间信息传递的问题,目标是通过最少的沟渠连接确保任意两点可达,同时尽量减小总路径长度。博主提供了实例和代码实现,展示了如何在稀疏图中应用最小生成树来优化资源分配。
摘要由CSDN通过智能技术生成

题目描述


    胡队长带领HA实验的战士们玩真人CS,真人CS的地图由一些据点组成,现在胡队长已经占领了n个据点,为了方便,将他们编号为1-n,为了隐蔽,胡队长命令战士们在每个据点出挖一个坑,让战士们躲在坑里。由于需要在任意两个点之间传递信息,两个坑之间必须挖出至少一条通路,而挖沟是一件很麻烦的差事,所以胡队长希望挖出数量尽可能少的沟,使得任意两个据点之间有至少一条通路,顺便,尽可能的∑d[i][j]使最小(其中d[i][j]为据点i到j的距离)。

输入描述:

第一行有2个正整数n,m,m表示可供挖的沟数。
接下来m行,每行3个数a,b,v,每行描述一条可供挖的沟,该沟可以使a与b连通,长度为v。

输出描述:

输出一行,一个正整数,表示要使得任意两个据点之间有一条通路,至少需要挖长的沟。(数据保证有解)

示例1

输入

2 2
1 2 1
1 2 3

输出

1

示例2

输入

3 3
1 2 3
2 3 4
1 3 5

输出

7

备注:

对于100%的测试数据:
1 ≤ n ≤ 100000
1 ≤ m ≤ 500000
1 ≤ v ≤ 10000

思路:题目大意为通过最短的边权之和使所有点联通,因此此题明显为一个最小生成树的裸题,因为题目所给的为一个稀疏图,因此可以用kruskal算法求解

AC代码:

#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
using namespace std;

const int N=100010,M=500010;

struct Edge
{
    int a,b,w;
    bool operator<(const Edge&t)const{
        return w<t.w;
    }
}edge[M];
int n,m;
int p[N];

int find(int x)
{
    if(x==p[x])
        return x;
    return p[x]=find(p[x]);
}

int main()
{
    scanf("%d%d",&n,&m);
    for(int i=0;i<m;i++)
    {
        int a,b,w;
        scanf("%d%d%d",&a,&b,&w);
        edge[i]={a,b,w};
    }
    sort(edge,edge+m);
    
    for(int i=1;i<=n;i++)
        p[i]=i;
    
    int res=0;
    for(int i=0;i<m;i++)
    {
        int a=find(edge[i].a),b=find(edge[i].b),w=edge[i].w;
        if(a!=b)
        {
            p[a]=b;
            res+=w;
        }
    }
    
    cout<<res<<endl;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Double.Qing

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值