牛客 NC25020 [USACO 2007 Nov S]Cow Hurdles

本文介绍了一种算法,用于解决牛农John帮助Bessie和团队在跳跃比赛中找到最小栏高路径的问题。通过Floyd-Warshall算法更新最短路径的同时考虑最大栏高,展示了如何在给定N个站台和M条路径,以及T个任务的情况下找到从A到B的最小最大栏高路径。实例分析了查询1-3的结果和解决方案。
摘要由CSDN通过智能技术生成

题目描述

Farmer John wants the cows to prepare for the county jumping competition, so Bessie and the gang are practicing jumping over hurdles. They are getting tired, though, so they want to be able to use as little energy as possible to jump over the hurdles.
Obviously, it is not very difficult for a cow to jump over several very short hurdles, but one tall hurdle can be very stressful. Thus, the cows are only concerned about the height of the tallest hurdle they have to jump over.
The cows' practice room has N (1 ≤ N ≤ 300) stations, conveniently labeled 1..N. A set of M (1 ≤ M ≤ 25,000) one-way paths connects pairs of stations; the paths are also conveniently labeled 1..M. Path i travels from station Si to station Ei and contains exactly one hurdle of height Hi (1 ≤ Hi ≤ 1,000,000). Cows must jump hurdles in any path they traverse.
The cows have T (1 ≤ T ≤ 40,000) tasks to complete. Task i comprises two distinct numbers, Ai and Bi (1 ≤ Ai ≤ N; 1 ≤ Bi ≤ N), which connote that a cow has to travel from station Ai to station Bi (by traversing over one or more paths over some route). The cows want to take a path the minimizes the height of the tallest hurdle they jump over when traveling from Ai to Bi . Your job is to write a program that determines the path whose tallest hurdle is smallest and report that height.

输入描述:

* Line 1: Three space-separated integers: N, M, and T
* Lines 2..M+1: Line i+1 contains three space-separated integers: Si , Ei , and Hi
* Lines M+2..M+T+1: Line i+M+1 contains two space-separated integers that describe task i: Ai and Bi

输出描述:

* Lines 1..T: Line i contains the result for task i and tells the smallest possible maximum height necessary to travel between the stations. Output -1 if it is impossible to travel between the two stations.

示例1

输入

复制

5 6 3
1 2 12
3 2 8
1 3 5
2 5 3
3 4 4
2 4 8
3 4
1 2
5 1

输出

复制

4
8
-1

说明

Query #1: The best way is to simply travel on the path from station 3 to station 4.
Query #2: There is a path from station 1 to station 2, but a better way would be to travel from station 1 to station 3 and then to station 2.
Query #3: There are no paths that start at station 5, so it is clear that there is no way to reach station 1 from station 5.

思路:要求最短路当中的最大栏高,我们可以在更新最短路时直接用最大栏高更新

AC代码:

#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
using namespace std;

const int N=310,INF=0x3f3f3f3f;

int n,m,x;
int d[N][N];

void floyd()
{
	for(int k=1;k<=n;k++)
		for(int i=1;i<=n;i++)
			for(int j=1;j<=n;j++)
				d[i][j]=min(d[i][j],max(d[i][k],d[k][j]));
}

int main()
{
	scanf("%d%d%d",&n,&m,&x);
	memset(d,0x3f,sizeof d);
	for(int i=1;i<=n;i++)
		d[i][i]=0;
	
	while(m--)
	{
		int a,b,c;
		scanf("%d%d%d",&a,&b,&c);
		d[a][b]=min(d[a][b],c);
	}
	
	floyd();
	
	while(x--)
	{
		int a,b;
		scanf("%d%d",&a,&b);
		if(d[a][b]==INF)
			puts("-1");
		else 
			printf("%d\n",d[a][b]);
	}
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Double.Qing

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值