题目描述
有 n 个同学(编号为 1 到 n)正在玩一个信息传递的游戏。在游戏里每人都有一个固定的信息传递对象,其中,编号为 i 的同学的信息传递对象是编号为Ti的同学。
游戏开始时,每人都只知道自己的生日。之后每一轮中,所有人会同时将自己当前所知的生日信息告诉各自的信息传递对象(注意:可能有人可以从若干人那里获取信息, 但是每人只会把信息告诉一个人,即自己的信息传递对象)。当有人从别人口中得知自己的生日时,游戏结束。请问该游戏一共可以进行几轮?
输入描述:
第 1 行包含 1 个正整数 n,表示 n 个人。
第 2 行包含 n 个用空格隔开的正整数T1,T2, … … ,Tn,其中第 i 个整数Ti表示编号为 i 的同学的信息传递对象是编号为Ti的同学,Ti≤ n 且Ti≠ i。
数据保证游戏一定会结束。
输出描述:
1个整数,表示游戏一共可以进行多少轮。示例1
输入
复制
5 2 4 2 3 1输出
复制
3说明
游戏的流程如图所示。当进行完第3 轮游戏后,4 号玩家会听到2 号玩家告诉他自己的生日,所以答案为3。当然,第3 轮游戏后,2 号玩家、3 号玩家都能从自己的消息来源得知自己的生日,同样符合游戏结束的条件。
备注:
对于30%的数据,n≤ 200; 对于60%的数据,n≤ 2500; 对于100%的数据,n≤ 200000。
思路:要求最多进行的轮数,也就是求从某一点出发再回到该点的最短路径,也就是求最小环;
AC代码:
#include<iostream>
#include<cstring>
#include<cstdio>
using namespace std;
const int N=200010;
int n;
int fa[N];
int getFa(int x,int &cnt)
{
cnt++;
if(fa[x]==x)
return x;
return getFa(fa[x],cnt);
}
int main()
{
int n;
cin>>n;
for(int i=1;i<=n;i++)
fa[i]=i;
int res=0x3f3f3f3f;
for(int i=1;i<=n;i++)
{
int p,cnt=0;
scanf("%d",&p);
if(getFa(p,cnt)==i)
res=min(res,cnt);
else
fa[i]=p;
}
cout<<res;
}
有 n 个同学(编号为 1 到 n)正在玩一个信息传递的游戏。在游戏里每人都有一个固定的信息传递对象,其中,编号为 i 的同学的信息传递对象是编号为Ti的同学。
游戏开始时,每人都只知道自己的生日。之后每一轮中,所有人会同时将自己当前所知的生日信息告诉各自的信息传递对象(注意:可能有人可以从若干人那里获取信息, 但是每人只会把信息告诉一个人,即自己的信息传递对象)。当有人从别人口中得知自己的生日时,游戏结束。请问该游戏一共可以进行几轮?
有 n 个同学(编号为 1 到 n)正在玩一个信息传递的游戏。在游戏里每人都有一个固定的信息传递对象,其中,编号为 i 的同学的信息传递对象是编号为Ti的同学。
游戏开始时,每人都只知道自己的生日。之后每一轮中,所有人会同时将自己当前所知的生日信息告诉各自的信息传递对象(注意:可能有人可以从若干人那里获取信息, 但是每人只会把信息告诉一个人,即自己的信息传递对象)。当有人从别人口中得知自己的生日时,游戏结束。请问该游戏一共可以进行几轮?